You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
290 lines
11 KiB
290 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2015, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include <iostream> |
|
#include <opencv2/core.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <opencv2/calib3d.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/structured_light.hpp> |
|
#include <opencv2/viz.hpp> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
static const char* keys = |
|
{ "{@images_list | | Image list where the captured pattern images are saved}" |
|
"{@calib_param_path | | Calibration_parameters }" |
|
"{@proj_width | | The projector width used to acquire the pattern }" |
|
"{@proj_height | | The projector height used to acquire the pattern}" |
|
"{@white_thresh | | The white threshold height (optional)}" |
|
"{@black_thresh | | The black threshold (optional)}" }; |
|
|
|
static void help() |
|
{ |
|
cout << "\nThis example shows how to use the \"Structured Light module\" to decode a previously acquired gray code pattern, generating a pointcloud" |
|
"\nCall:\n" |
|
"./example_structured_light_pointcloud <images_list> <calib_param_path> <proj_width> <proj_height> <white_thresh> <black_thresh>\n" |
|
<< endl; |
|
} |
|
|
|
static bool readStringList( const string& filename, vector<string>& l ) |
|
{ |
|
l.resize( 0 ); |
|
FileStorage fs( filename, FileStorage::READ ); |
|
if( !fs.isOpened() ) |
|
{ |
|
cerr << "failed to open " << filename << endl; |
|
return -1; |
|
} |
|
FileNode n = fs.getFirstTopLevelNode(); |
|
if( n.type() != FileNode::SEQ ) |
|
{ |
|
cerr << "cam 1 images are not a sequence! FAIL" << endl; |
|
return -1; |
|
} |
|
|
|
FileNodeIterator it = n.begin(), it_end = n.end(); |
|
for( ; it != it_end; ++it ) |
|
{ |
|
l.push_back( ( string ) *it ); |
|
} |
|
|
|
n = fs["cam2"]; |
|
if( n.type() != FileNode::SEQ ) |
|
{ |
|
cerr << "cam 2 images are not a sequence! FAIL" << endl; |
|
return -1; |
|
} |
|
|
|
it = n.begin(), it_end = n.end(); |
|
for( ; it != it_end; ++it ) |
|
{ |
|
l.push_back( ( string ) *it ); |
|
} |
|
|
|
if( l.size() % 2 != 0 ) |
|
{ |
|
cout << "Error: the image list contains odd (non-even) number of elements\n"; |
|
return -1; |
|
} |
|
return true; |
|
} |
|
|
|
int main( int argc, char** argv ) |
|
{ |
|
structured_light::GrayCodePattern::Params params; |
|
CommandLineParser parser( argc, argv, keys ); |
|
String images_file = parser.get<String>( 0 ); |
|
String calib_file = parser.get<String>( 1 ); |
|
|
|
params.width = parser.get<int>( 2 ); |
|
params.height = parser.get<int>( 3 ); |
|
|
|
if( images_file.empty() || calib_file.empty() || params.width < 1 || params.height < 1 || argc < 5 || argc > 7 ) |
|
{ |
|
help(); |
|
return -1; |
|
} |
|
|
|
// Set up GraycodePattern with params |
|
Ptr<structured_light::GrayCodePattern> graycode = structured_light::GrayCodePattern::create( params ); |
|
size_t white_thresh = 0; |
|
size_t black_thresh = 0; |
|
|
|
if( argc == 7 ) |
|
{ |
|
// If passed, setting the white and black threshold, otherwise using default values |
|
white_thresh = parser.get<size_t>( 4 ); |
|
black_thresh = parser.get<size_t>( 5 ); |
|
|
|
graycode->setWhiteThreshold( white_thresh ); |
|
graycode->setBlackThreshold( black_thresh ); |
|
} |
|
|
|
vector<string> imagelist; |
|
bool ok = readStringList( images_file, imagelist ); |
|
if( !ok || imagelist.empty() ) |
|
{ |
|
cout << "can not open " << images_file << " or the string list is empty" << endl; |
|
help(); |
|
return -1; |
|
} |
|
|
|
FileStorage fs( calib_file, FileStorage::READ ); |
|
if( !fs.isOpened() ) |
|
{ |
|
cout << "Failed to open Calibration Data File." << endl; |
|
help(); |
|
return -1; |
|
} |
|
|
|
// Loading calibration parameters |
|
Mat cam1intrinsics, cam1distCoeffs, cam2intrinsics, cam2distCoeffs, R, T; |
|
fs["cam1_intrinsics"] >> cam1intrinsics; |
|
fs["cam2_intrinsics"] >> cam2intrinsics; |
|
fs["cam1_distorsion"] >> cam1distCoeffs; |
|
fs["cam2_distorsion"] >> cam2distCoeffs; |
|
fs["R"] >> R; |
|
fs["T"] >> T; |
|
|
|
cout << "cam1intrinsics" << endl << cam1intrinsics << endl; |
|
cout << "cam1distCoeffs" << endl << cam1distCoeffs << endl; |
|
cout << "cam2intrinsics" << endl << cam2intrinsics << endl; |
|
cout << "cam2distCoeffs" << endl << cam2distCoeffs << endl; |
|
cout << "T" << endl << T << endl << "R" << endl << R << endl; |
|
|
|
if( (!R.data) || (!T.data) || (!cam1intrinsics.data) || (!cam2intrinsics.data) || (!cam1distCoeffs.data) || (!cam2distCoeffs.data) ) |
|
{ |
|
cout << "Failed to load cameras calibration parameters" << endl; |
|
help(); |
|
return -1; |
|
} |
|
|
|
size_t numberOfPatternImages = graycode->getNumberOfPatternImages(); |
|
vector<vector<Mat> > captured_pattern; |
|
captured_pattern.resize( 2 ); |
|
captured_pattern[0].resize( numberOfPatternImages ); |
|
captured_pattern[1].resize( numberOfPatternImages ); |
|
|
|
Mat color = imread( imagelist[numberOfPatternImages], IMREAD_COLOR ); |
|
Size imagesSize = color.size(); |
|
|
|
// Stereo rectify |
|
cout << "Rectifying images..." << endl; |
|
Mat R1, R2, P1, P2, Q; |
|
Rect validRoi[2]; |
|
stereoRectify( cam1intrinsics, cam1distCoeffs, cam2intrinsics, cam2distCoeffs, imagesSize, R, T, R1, R2, P1, P2, Q, 0, |
|
-1, imagesSize, &validRoi[0], &validRoi[1] ); |
|
|
|
Mat map1x, map1y, map2x, map2y; |
|
initUndistortRectifyMap( cam1intrinsics, cam1distCoeffs, R1, P1, imagesSize, CV_32FC1, map1x, map1y ); |
|
initUndistortRectifyMap( cam2intrinsics, cam2distCoeffs, R2, P2, imagesSize, CV_32FC1, map2x, map2y ); |
|
|
|
// Loading pattern images |
|
for( size_t i = 0; i < numberOfPatternImages; i++ ) |
|
{ |
|
captured_pattern[0][i] = imread( imagelist[i], IMREAD_GRAYSCALE ); |
|
captured_pattern[1][i] = imread( imagelist[i + numberOfPatternImages + 2], IMREAD_GRAYSCALE ); |
|
|
|
if( (!captured_pattern[0][i].data) || (!captured_pattern[1][i].data) ) |
|
{ |
|
cout << "Empty images" << endl; |
|
help(); |
|
return -1; |
|
} |
|
|
|
remap( captured_pattern[1][i], captured_pattern[1][i], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); |
|
remap( captured_pattern[0][i], captured_pattern[0][i], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); |
|
|
|
} |
|
cout << "done" << endl; |
|
|
|
vector<Mat> blackImages; |
|
vector<Mat> whiteImages; |
|
|
|
blackImages.resize( 2 ); |
|
whiteImages.resize( 2 ); |
|
|
|
// Loading images (all white + all black) needed for shadows computation |
|
cvtColor( color, whiteImages[0], COLOR_RGB2GRAY ); |
|
|
|
whiteImages[1] = imread( imagelist[2 * numberOfPatternImages + 2], IMREAD_GRAYSCALE ); |
|
blackImages[0] = imread( imagelist[numberOfPatternImages + 1], IMREAD_GRAYSCALE ); |
|
blackImages[1] = imread( imagelist[2 * numberOfPatternImages + 2 + 1], IMREAD_GRAYSCALE ); |
|
|
|
remap( color, color, map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); |
|
|
|
remap( whiteImages[0], whiteImages[0], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); |
|
remap( whiteImages[1], whiteImages[1], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); |
|
|
|
remap( blackImages[0], blackImages[0], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); |
|
remap( blackImages[1], blackImages[1], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); |
|
|
|
cout << endl << "Decoding pattern ..." << endl; |
|
Mat disparityMap; |
|
bool decoded = graycode->decode( captured_pattern, disparityMap, blackImages, whiteImages, |
|
structured_light::DECODE_3D_UNDERWORLD ); |
|
if( decoded ) |
|
{ |
|
cout << endl << "pattern decoded" << endl; |
|
|
|
// To better visualize the result, apply a colormap to the computed disparity |
|
double min; |
|
double max; |
|
minMaxIdx(disparityMap, &min, &max); |
|
Mat cm_disp, scaledDisparityMap; |
|
cout << "disp min " << min << endl << "disp max " << max << endl; |
|
convertScaleAbs( disparityMap, scaledDisparityMap, 255 / ( max - min ) ); |
|
applyColorMap( scaledDisparityMap, cm_disp, COLORMAP_JET ); |
|
|
|
// Show the result |
|
resize( cm_disp, cm_disp, Size( 640, 480 ) ); |
|
imshow( "cm disparity m", cm_disp ); |
|
|
|
// Compute the point cloud |
|
Mat pointcloud; |
|
disparityMap.convertTo( disparityMap, CV_32FC1 ); |
|
reprojectImageTo3D( disparityMap, pointcloud, Q, true, -1 ); |
|
|
|
// Compute a mask to remove background |
|
Mat dst, thresholded_disp; |
|
threshold( scaledDisparityMap, thresholded_disp, 0, 255, THRESH_OTSU + THRESH_BINARY ); |
|
resize( thresholded_disp, dst, Size( 640, 480 ) ); |
|
imshow( "threshold disp otsu", dst ); |
|
|
|
// Apply the mask to the point cloud |
|
Mat pointcloud_tresh, color_tresh; |
|
pointcloud.copyTo( pointcloud_tresh, thresholded_disp ); |
|
color.copyTo( color_tresh, thresholded_disp ); |
|
|
|
// Show the point cloud on viz |
|
viz::Viz3d myWindow( "Point cloud with color" ); |
|
myWindow.setBackgroundMeshLab(); |
|
myWindow.showWidget( "coosys", viz::WCoordinateSystem() ); |
|
myWindow.showWidget( "pointcloud", viz::WCloud( pointcloud_tresh, color_tresh ) ); |
|
myWindow.showWidget( "text2d", viz::WText( "Point cloud", Point(20, 20), 20, viz::Color::green() ) ); |
|
myWindow.spin(); |
|
} |
|
|
|
waitKey(); |
|
return 0; |
|
} |