Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

293 lines
7.8 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include <opencv2/core/ocl.hpp>
#include <iostream>
#include "npy_blob.hpp"
#include <opencv2/dnn/all_layers.hpp>
namespace cvtest
{
using namespace cv;
using namespace cv::dnn;
template<typename TString>
static String _tf(TString filename)
{
return (getOpenCVExtraDir() + "/dnn/layers/") + filename;
}
static void testLayer(String basename, bool useCaffeModel = false, bool useCommonInputBlob = true)
{
String prototxt = _tf(basename + ".prototxt");
String caffemodel = _tf(basename + ".caffemodel");
String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy");
String outfile = _tf(basename + ".npy");
Net net;
{
Ptr<Importer> importer = createCaffeImporter(prototxt, (useCaffeModel) ? caffemodel : String());
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
Blob inp = blobFromNPY(inpfile);
Blob ref = blobFromNPY(outfile);
net.setBlob(".input", inp);
net.forward();
Blob out = net.getBlob("output");
normAssert(ref, out);
}
TEST(Layer_Test_Softmax, Accuracy)
{
testLayer("layer_softmax");
}
TEST(Layer_Test_LRN_spatial, Accuracy)
{
testLayer("layer_lrn_spatial");
}
TEST(Layer_Test_LRN_channels, Accuracy)
{
testLayer("layer_lrn_channels");
}
TEST(Layer_Test_Convolution, Accuracy)
{
testLayer("layer_convolution", true);
}
//TODO: move this test into separate file
TEST(Layer_Test_Convolution, AccuracyOCL)
{
if (cv::ocl::haveOpenCL())
{
cv::ocl::setUseOpenCL(true);
testLayer("layer_convolution", true);
cv::ocl::setUseOpenCL(false);
}
}
TEST(Layer_Test_InnerProduct, Accuracy)
{
testLayer("layer_inner_product", true);
}
TEST(Layer_Test_Pooling_max, Accuracy)
{
testLayer("layer_pooling_max");
}
TEST(Layer_Test_Pooling_ave, Accuracy)
{
testLayer("layer_pooling_ave");
}
TEST(Layer_Test_DeConvolution, Accuracy)
{
testLayer("layer_deconvolution", true, false);
}
TEST(Layer_Test_MVN, Accuracy)
{
testLayer("layer_mvn");
}
TEST(Layer_Test_Reshape, squeeze)
{
LayerParams params;
params.set("axis", 2);
params.set("num_axes", 1);
Blob inp(BlobShape(4, 3, 1, 2));
std::vector<Blob*> inpVec(1, &inp);
std::vector<Blob> outVec;
Ptr<Layer> rl = LayerFactory::createLayerInstance("Reshape", params);
rl->allocate(inpVec, outVec);
rl->forward(inpVec, outVec);
EXPECT_EQ(outVec[0].shape(), BlobShape(Vec3i(4, 3, 2)));
}
TEST(Layer_Test_Reshape_Split_Slice, Accuracy)
{
Net net;
{
Ptr<Importer> importer = createCaffeImporter(_tf("reshape_and_slice_routines.prototxt"));
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
Blob input(BlobShape(Vec2i(6, 12)));
RNG rng(0);
rng.fill(input.matRef(), RNG::UNIFORM, -1, 1);
net.setBlob(".input", input);
net.forward();
Blob output = net.getBlob("output");
normAssert(input, output);
}
class Layer_LSTM_Test : public ::testing::Test
{
public:
int Nx, Nc;
Blob Wh, Wx, b;
Ptr<LSTMLayer> layer;
std::vector<Blob> inputs, outputs;
std::vector<Blob*> inputsPtr;
Layer_LSTM_Test(int _Nx = 31, int _Nc = 100)
{
Nx = _Nx;
Nc = _Nc;
Wh = Blob(BlobShape(4 * Nc, Nc));
Wx = Blob(BlobShape(4 * Nc, Nx));
b = Blob(BlobShape(4 * Nc, 1));
layer = LSTMLayer::create();
layer->setWeights(Wh, Wx, b);
}
void allocateAndForward()
{
inputsPtr.clear();
for (size_t i = 0; i < inputs.size(); i++)
inputsPtr.push_back(&inputs[i]);
layer->allocate(inputsPtr, outputs);
layer->forward(inputsPtr, outputs);
}
};
TEST_F(Layer_LSTM_Test, BasicTest_1)
{
inputs.push_back(Blob(BlobShape(1, 2, 3, Nx)));
allocateAndForward();
EXPECT_EQ(outputs.size(), 2);
EXPECT_EQ(outputs[0].shape(), BlobShape(1, 2, 3, Nc));
EXPECT_EQ(outputs[1].shape(), BlobShape(1, 2, 3, Nc));
}
TEST_F(Layer_LSTM_Test, BasicTest_2)
{
inputs.push_back(Blob(BlobShape(1, 2, 3, Nx)));
inputs.push_back(Blob(BlobShape(1, 2, 3, Nc)));
inputs.push_back(Blob(BlobShape(1, 2, 3, Nc)));
allocateAndForward();
EXPECT_EQ(outputs.size(), 2);
EXPECT_EQ(outputs[0].shape(), BlobShape(1, 2, 3, Nc));
EXPECT_EQ(outputs[1].shape(), BlobShape(1, 2, 3, Nc));
}
class Layer_RNN_Test : public ::testing::Test
{
public:
int Nx, Nh, No;
Blob Whh, Wxh, bh, Who, bo;
Ptr<RNNLayer> layer;
std::vector<Blob> inputs, outputs;
std::vector<Blob*> inputsPtr;
Layer_RNN_Test(int _Nx = 31, int _Nh = 64, int _No = 100)
{
Nx = _Nx;
Nh = _Nh;
No = _No;
Whh = Blob(BlobShape(Nh, Nh));
Wxh = Blob(BlobShape(Nh, Nx));
bh = Blob(BlobShape(Nh, 1));
Who = Blob(BlobShape(No, Nh));
bo = Blob(BlobShape(No, 1));
layer = RNNLayer::create();
layer->setWeights(Whh, Wxh, bh, Who, bo);
}
void allocateAndForward()
{
inputsPtr.clear();
for (size_t i = 0; i < inputs.size(); i++)
inputsPtr.push_back(&inputs[i]);
layer->allocate(inputsPtr, outputs);
layer->forward(inputsPtr, outputs);
}
};
TEST_F(Layer_RNN_Test, BasicTest_1)
{
inputs.push_back(Blob(BlobShape(1, 2, 3, Nx)));
allocateAndForward();
EXPECT_EQ(outputs.size(), 2);
EXPECT_EQ(outputs[0].shape(), BlobShape(1, 2, 3, No));
EXPECT_EQ(outputs[1].shape(), BlobShape(1, 2, 3, Nh));
}
TEST_F(Layer_RNN_Test, BasicTest_2)
{
inputs.push_back(Blob(BlobShape(1, 2, 3, Nx)));
inputs.push_back(Blob(BlobShape(1, 2, 3, Nh)));
allocateAndForward();
EXPECT_EQ(outputs.size(), 2);
EXPECT_EQ(outputs[0].shape(), BlobShape(1, 2, 3, No));
EXPECT_EQ(outputs[1].shape(), BlobShape(1, 2, 3, Nh));
}
}