Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

355 lines
13 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::dnn;
#if HAVE_PROTOBUF
#include "caffe.pb.h"
#include <iostream>
#include <fstream>
#include <algorithm>
#include <google/protobuf/message.h>
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include "caffe_io.hpp"
using ::google::protobuf::RepeatedField;
using ::google::protobuf::RepeatedPtrField;
using ::google::protobuf::Message;
using ::google::protobuf::Descriptor;
using ::google::protobuf::FieldDescriptor;
using ::google::protobuf::Reflection;
namespace
{
class CaffeImporter : public Importer
{
caffe::NetParameter net;
caffe::NetParameter netBinary;
public:
CaffeImporter(const char *pototxt, const char *caffeModel)
{
ReadNetParamsFromTextFileOrDie(pototxt, &net);
if (caffeModel && caffeModel[0])
ReadNetParamsFromBinaryFileOrDie(caffeModel, &netBinary);
}
void addParam(const Message &msg, const FieldDescriptor *field, cv::dnn::LayerParams &params)
{
const Reflection *refl = msg.GetReflection();
int type = field->cpp_type();
bool isRepeated = field->is_repeated();
const std::string &name = field->name();
#define SET_UP_FILED(getter, arrayConstr, gtype) \
if (isRepeated) { \
const RepeatedField<gtype> &v = refl->GetRepeatedField<gtype>(msg, field); \
params.set(name, DictValue::arrayConstr(v.begin(), (int)v.size())); \
} \
else { \
params.set(name, refl->getter(msg, field)); \
}
switch (type)
{
case FieldDescriptor::CPPTYPE_INT32:
SET_UP_FILED(GetInt32, arrayInt, ::google::protobuf::int32);
break;
case FieldDescriptor::CPPTYPE_UINT32:
SET_UP_FILED(GetUInt32, arrayInt, ::google::protobuf::uint32);
break;
case FieldDescriptor::CPPTYPE_INT64:
SET_UP_FILED(GetInt32, arrayInt, ::google::protobuf::int64);
break;
case FieldDescriptor::CPPTYPE_UINT64:
SET_UP_FILED(GetUInt32, arrayInt, ::google::protobuf::uint64);
break;
case FieldDescriptor::CPPTYPE_BOOL:
SET_UP_FILED(GetBool, arrayInt, bool);
break;
case FieldDescriptor::CPPTYPE_DOUBLE:
SET_UP_FILED(GetDouble, arrayReal, double);
break;
case FieldDescriptor::CPPTYPE_FLOAT:
SET_UP_FILED(GetFloat, arrayReal, float);
break;
case FieldDescriptor::CPPTYPE_STRING:
if (isRepeated) {
const RepeatedPtrField<std::string> &v = refl->GetRepeatedPtrField<std::string>(msg, field);
params.set(name, DictValue::arrayString(v.begin(), (int)v.size()));
}
else {
params.set(name, refl->GetString(msg, field));
}
break;
case FieldDescriptor::CPPTYPE_ENUM:
if (isRepeated) {
int size = refl->FieldSize(msg, field);
std::vector<cv::String> buf(size);
for (int i = 0; i < size; i++)
buf[i] = refl->GetRepeatedEnum(msg, field, i)->name();
params.set(name, DictValue::arrayString(buf.begin(), size));
}
else {
params.set(name, refl->GetEnum(msg, field)->name());
}
break;
default:
CV_Error(Error::StsError, "Unknown type \"" + String(field->type_name()) + "\" in prototxt");
break;
}
}
inline static bool ends_with_param(const std::string &str)
{
static const std::string _param("_param");
return (str.size() >= _param.size()) && str.compare(str.size() - _param.size(), _param.size(), _param) == 0;
}
void extractLayerParams(const Message &msg, cv::dnn::LayerParams &params, bool isInternal = false)
{
const Descriptor *msgDesc = msg.GetDescriptor();
const Reflection *msgRefl = msg.GetReflection();
for (int fieldId = 0; fieldId < msgDesc->field_count(); fieldId++)
{
const FieldDescriptor *fd = msgDesc->field(fieldId);
if (!isInternal && !ends_with_param(fd->name()))
continue;
bool hasData = fd->is_required() ||
(fd->is_optional() && msgRefl->HasField(msg, fd)) ||
(fd->is_repeated() && msgRefl->FieldSize(msg, fd) > 0);
if (!hasData)
continue;
if (fd->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE)
{
if (fd->is_repeated()) //Extract only first item!
extractLayerParams(msgRefl->GetRepeatedMessage(msg, fd, 0), params, true);
else
extractLayerParams(msgRefl->GetMessage(msg, fd), params, true);
}
else
{
addParam(msg, fd, params);
}
}
}
BlobShape blobShapeFromProto(const caffe::BlobProto &pbBlob)
{
if (pbBlob.has_num() || pbBlob.has_channels() || pbBlob.has_height() || pbBlob.has_width())
{
return BlobShape(pbBlob.num(), pbBlob.channels(), pbBlob.height(), pbBlob.width());
}
else if (pbBlob.has_shape())
{
const caffe::BlobShape &_shape = pbBlob.shape();
BlobShape shape = BlobShape::all(_shape.dim_size());
for (int i = 0; i < _shape.dim_size(); i++)
shape[i] = (int)_shape.dim(i);
return shape;
}
else
{
CV_Error(Error::StsError, "Unknown shape of input blob");
return BlobShape();
}
}
void blobFromProto(const caffe::BlobProto &pbBlob, cv::dnn::Blob &dstBlob)
{
BlobShape shape = blobShapeFromProto(pbBlob);
dstBlob.create(shape, CV_32F);
CV_Assert(pbBlob.data_size() == (int)dstBlob.matRefConst().total());
CV_DbgAssert(pbBlob.GetDescriptor()->FindFieldByLowercaseName("data")->cpp_type() == FieldDescriptor::CPPTYPE_FLOAT);
float *dstData = dstBlob.matRef().ptr<float>();
for (int i = 0; i < pbBlob.data_size(); i++)
dstData[i] = pbBlob.data(i);
}
void extractBinaryLayerParms(const caffe::LayerParameter& layer, LayerParams& layerParams)
{
const std::string &name = layer.name();
int li;
for (li = 0; li != netBinary.layer_size(); li++)
{
if (netBinary.layer(li).name() == name)
break;
}
if (li == netBinary.layer_size() || netBinary.layer(li).blobs_size() == 0)
return;
const caffe::LayerParameter &binLayer = netBinary.layer(li);
layerParams.blobs.resize(binLayer.blobs_size());
for (int bi = 0; bi < binLayer.blobs_size(); bi++)
{
blobFromProto(binLayer.blobs(bi), layerParams.blobs[bi]);
}
}
struct BlobNote
{
BlobNote(const std::string &_name, int _layerId, int _outNum) :
name(_name.c_str()), layerId(_layerId), outNum(_outNum) {}
const char *name;
int layerId, outNum;
};
void populateNet(Net dstNet)
{
int layersSize = net.layer_size();
std::vector<BlobNote> addedBlobs;
addedBlobs.reserve(layersSize + 1);
//setup input layer names
{
std::vector<String> netInputs(net.input_size());
for (int inNum = 0; inNum < net.input_size(); inNum++)
{
addedBlobs.push_back(BlobNote(net.input(inNum), 0, inNum));
netInputs[inNum] = net.input(inNum);
}
dstNet.setNetInputs(netInputs);
}
for (int li = 0; li < layersSize; li++)
{
const caffe::LayerParameter &layer = net.layer(li);
String name = layer.name();
String type = layer.type();
LayerParams layerParams;
extractLayerParams(layer, layerParams);
extractBinaryLayerParms(layer, layerParams);
int id = dstNet.addLayer(name, type, layerParams);
for (int inNum = 0; inNum < layer.bottom_size(); inNum++)
addInput(layer.bottom(inNum), id, inNum, dstNet, addedBlobs);
for (int outNum = 0; outNum < layer.top_size(); outNum++)
addOutput(layer, id, outNum, addedBlobs);
}
}
void addOutput(const caffe::LayerParameter &layer, int layerId, int outNum, std::vector<BlobNote> &addedBlobs)
{
const std::string &name = layer.top(outNum);
bool haveDups = false;
for (int idx = (int)addedBlobs.size() - 1; idx >= 0; idx--)
{
if (addedBlobs[idx].name == name)
{
haveDups = true;
break;
}
}
if (haveDups)
{
bool isInplace = layer.bottom_size() > outNum && layer.bottom(outNum) == name;
if (!isInplace)
CV_Error(Error::StsBadArg, "Duplicate blobs produced by multiple sources");
}
addedBlobs.push_back(BlobNote(name, layerId, outNum));
}
void addInput(const std::string &name, int layerId, int inNum, Net &dstNet, std::vector<BlobNote> &addedBlobs)
{
int idx;
for (idx = (int)addedBlobs.size() - 1; idx >= 0; idx--)
{
if (addedBlobs[idx].name == name)
break;
}
if (idx < 0)
{
CV_Error(Error::StsObjectNotFound, "Can't found output blob \"" + name + "\"");
return;
}
dstNet.connect(addedBlobs[idx].layerId, addedBlobs[idx].outNum, layerId, inNum);
}
~CaffeImporter()
{
}
};
}
Ptr<Importer> cv::dnn::createCaffeImporter(const String &prototxt, const String &caffeModel)
{
return Ptr<Importer>(new CaffeImporter(prototxt.c_str(), caffeModel.c_str()));
}
#else //HAVE_PROTOBUF
Ptr<Importer> cv::dnn::createCaffeImporter(const String&, const String&)
{
CV_Error(cv::Error::StsNotImplemented, "libprotobuf required to import data from Caffe models");
return Ptr<Importer>();
}
#endif //HAVE_PROTOBUF