You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1265 lines
46 KiB
1265 lines
46 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/ml.hpp" |
|
|
|
#include <iostream> |
|
#include <fstream> |
|
#include <queue> |
|
|
|
namespace cv |
|
{ |
|
namespace text |
|
{ |
|
|
|
using namespace std; |
|
using namespace cv::ml; |
|
|
|
|
|
/* OCR HMM Decoder */ |
|
|
|
void OCRHMMDecoder::run(Mat& image, string& output_text, vector<Rect>* component_rects, |
|
vector<string>* component_texts, vector<float>* component_confidences, |
|
int component_level) |
|
{ |
|
CV_Assert( (image.type() == CV_8UC1) || (image.type() == CV_8UC3) ); |
|
CV_Assert( (component_level == OCR_LEVEL_TEXTLINE) || (component_level == OCR_LEVEL_WORD) ); |
|
output_text.clear(); |
|
if (component_rects != NULL) |
|
component_rects->clear(); |
|
if (component_texts != NULL) |
|
component_texts->clear(); |
|
if (component_confidences != NULL) |
|
component_confidences->clear(); |
|
} |
|
|
|
void OCRHMMDecoder::run(Mat& image, Mat& mask, string& output_text, vector<Rect>* component_rects, |
|
vector<string>* component_texts, vector<float>* component_confidences, |
|
int component_level) |
|
{ |
|
CV_Assert( (image.type() == CV_8UC1) || (image.type() == CV_8UC3) ); |
|
CV_Assert( mask.type() == CV_8UC1 ); |
|
CV_Assert( (component_level == OCR_LEVEL_TEXTLINE) || (component_level == OCR_LEVEL_WORD) ); |
|
output_text.clear(); |
|
if (component_rects != NULL) |
|
component_rects->clear(); |
|
if (component_texts != NULL) |
|
component_texts->clear(); |
|
if (component_confidences != NULL) |
|
component_confidences->clear(); |
|
} |
|
|
|
CV_WRAP String OCRHMMDecoder::run(InputArray image, int min_confidence, int component_level) |
|
{ |
|
std::string output1; |
|
std::string output2; |
|
vector<string> component_texts; |
|
vector<float> component_confidences; |
|
Mat image_m = image.getMat(); |
|
run(image_m, output1, NULL, &component_texts, &component_confidences, component_level); |
|
for(unsigned int i = 0; i < component_texts.size(); i++) |
|
{ |
|
//cout << "confidence: " << component_confidences[i] << " text:" << component_texts[i] << endl; |
|
if(component_confidences[i] > min_confidence) |
|
{ |
|
output2 += component_texts[i]; |
|
} |
|
} |
|
return String(output2); |
|
} |
|
|
|
CV_WRAP cv::String OCRHMMDecoder::run(InputArray image, InputArray mask, int min_confidence, int component_level) |
|
{ |
|
std::string output1; |
|
std::string output2; |
|
vector<string> component_texts; |
|
vector<float> component_confidences; |
|
Mat image_m = image.getMat(); |
|
Mat mask_m = mask.getMat(); |
|
run(image_m, mask_m, output1, NULL, &component_texts, &component_confidences, component_level); |
|
for(unsigned int i = 0; i < component_texts.size(); i++) |
|
{ |
|
cout << "confidence: " << component_confidences[i] << " text:" << component_texts[i] << endl; |
|
|
|
if(component_confidences[i] > min_confidence) |
|
{ |
|
output2 += component_texts[i]; |
|
} |
|
} |
|
return String(output2); |
|
} |
|
|
|
void OCRHMMDecoder::ClassifierCallback::eval( InputArray image, vector<int>& out_class, vector<double>& out_confidence) |
|
{ |
|
CV_Assert(( image.getMat().type() == CV_8UC3 ) || ( image.getMat().type() == CV_8UC1 )); |
|
out_class.clear(); |
|
out_confidence.clear(); |
|
} |
|
|
|
|
|
bool sort_rect_horiz (Rect a,Rect b); |
|
bool sort_rect_horiz (Rect a,Rect b) { return (a.x<b.x); } |
|
|
|
class OCRHMMDecoderImpl : public OCRHMMDecoder |
|
{ |
|
public: |
|
//Default constructor |
|
OCRHMMDecoderImpl( Ptr<OCRHMMDecoder::ClassifierCallback> _classifier, |
|
const string& _vocabulary, |
|
InputArray transition_probabilities_table, |
|
InputArray emission_probabilities_table, |
|
decoder_mode _mode) |
|
{ |
|
classifier = _classifier; |
|
transition_p = transition_probabilities_table.getMat(); |
|
emission_p = emission_probabilities_table.getMat(); |
|
vocabulary = _vocabulary; |
|
mode = _mode; |
|
} |
|
|
|
~OCRHMMDecoderImpl() |
|
{ |
|
} |
|
|
|
void run( Mat& image, |
|
string& out_sequence, |
|
vector<Rect>* component_rects, |
|
vector<string>* component_texts, |
|
vector<float>* component_confidences, |
|
int component_level) |
|
{ |
|
|
|
CV_Assert( (image.type() == CV_8UC1) || (image.type() == CV_8UC3) ); |
|
CV_Assert( (image.cols > 0) && (image.rows > 0) ); |
|
CV_Assert( component_level == OCR_LEVEL_WORD ); |
|
|
|
out_sequence.clear(); |
|
if (component_rects != NULL) |
|
component_rects->clear(); |
|
if (component_texts != NULL) |
|
component_texts->clear(); |
|
if (component_confidences != NULL) |
|
component_confidences->clear(); |
|
|
|
// First we split a line into words |
|
vector<Mat> words_mask; |
|
vector<Rect> words_rect; |
|
|
|
/// Find contours |
|
vector<vector<Point> > contours; |
|
vector<Vec4i> hierarchy; |
|
Mat tmp; |
|
image.copyTo(tmp); |
|
findContours( tmp, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0) ); |
|
if (contours.size() < 6) |
|
{ |
|
//do not split lines with less than 6 characters |
|
words_mask.push_back(image); |
|
words_rect.push_back(Rect(0,0,image.cols,image.rows)); |
|
} |
|
else |
|
{ |
|
|
|
Mat_<float> vector_w((int)image.cols,1); |
|
reduce(image, vector_w, 0, REDUCE_SUM, -1); |
|
|
|
vector<int> spaces; |
|
vector<int> spaces_start; |
|
vector<int> spaces_end; |
|
int space_count=0; |
|
int last_one_idx; |
|
|
|
int s_init = 0, s_end=vector_w.cols; |
|
for (int s=0; s<vector_w.cols; s++) |
|
{ |
|
if (vector_w.at<float>(0,s) == 0) |
|
s_init = s+1; |
|
else |
|
break; |
|
} |
|
for (int s=vector_w.cols-1; s>=0; s--) |
|
{ |
|
if (vector_w.at<float>(0,s) == 0) |
|
s_end = s; |
|
else |
|
break; |
|
} |
|
|
|
for (int s=s_init; s<s_end; s++) |
|
{ |
|
if (vector_w.at<float>(0,s) == 0) |
|
{ |
|
space_count++; |
|
} else { |
|
if (space_count!=0) |
|
{ |
|
spaces.push_back(space_count); |
|
spaces_start.push_back(last_one_idx); |
|
spaces_end.push_back(s-1); |
|
} |
|
space_count = 0; |
|
last_one_idx = s; |
|
} |
|
} |
|
Scalar mean_space,std_space; |
|
meanStdDev(Mat(spaces),mean_space,std_space); |
|
int num_word_spaces = 0; |
|
int last_word_space_end = 0; |
|
for (int s=0; s<(int)spaces.size(); s++) |
|
{ |
|
if (spaces_end.at(s)-spaces_start.at(s) > mean_space[0]+(mean_space[0]*1.1)) //this 1.1 is a param? |
|
{ |
|
if (num_word_spaces == 0) |
|
{ |
|
//cout << " we have a word from 0 to " << spaces_start.at(s) << endl; |
|
Mat word_mask; |
|
Rect word_rect = Rect(0,0,spaces_start.at(s),image.rows); |
|
image(word_rect).copyTo(word_mask); |
|
|
|
words_mask.push_back(word_mask); |
|
words_rect.push_back(word_rect); |
|
} |
|
else |
|
{ |
|
//cout << " we have a word from " << last_word_space_end << " to " << spaces_start.at(s) << endl; |
|
Mat word_mask; |
|
Rect word_rect = Rect(last_word_space_end,0,spaces_start.at(s)-last_word_space_end,image.rows); |
|
image(word_rect).copyTo(word_mask); |
|
|
|
words_mask.push_back(word_mask); |
|
words_rect.push_back(word_rect); |
|
} |
|
num_word_spaces++; |
|
last_word_space_end = spaces_end.at(s); |
|
} |
|
} |
|
//cout << " we have a word from " << last_word_space_end << " to " << vector_w.cols << endl << endl << endl; |
|
Mat word_mask; |
|
Rect word_rect = Rect(last_word_space_end,0,vector_w.cols-last_word_space_end,image.rows); |
|
image(word_rect).copyTo(word_mask); |
|
|
|
words_mask.push_back(word_mask); |
|
words_rect.push_back(word_rect); |
|
|
|
} |
|
|
|
for (int w=0; w<(int)words_mask.size(); w++) |
|
{ |
|
|
|
vector< vector<int> > observations; |
|
vector< vector<double> > confidences; |
|
vector<int> obs; |
|
// First find contours and sort by x coordinate of bbox |
|
words_mask[w].copyTo(tmp); |
|
if (tmp.empty()) |
|
continue; |
|
contours.clear(); |
|
hierarchy.clear(); |
|
/// Find contours |
|
findContours( tmp, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0) ); |
|
vector<Rect> contours_rect; |
|
for (int i=0; i<(int)contours.size(); i++) |
|
{ |
|
contours_rect.push_back(boundingRect(contours[i])); |
|
} |
|
|
|
sort(contours_rect.begin(), contours_rect.end(), sort_rect_horiz); |
|
|
|
// Do character recognition foreach contour |
|
for (int i=0; i<(int)contours.size(); i++) |
|
{ |
|
Mat tmp_mask; |
|
words_mask[w](contours_rect.at(i)).copyTo(tmp_mask); |
|
|
|
vector<int> out_class; |
|
vector<double> out_conf; |
|
classifier->eval(tmp_mask,out_class,out_conf); |
|
if (!out_class.empty()) |
|
obs.push_back(out_class[0]); |
|
observations.push_back(out_class); |
|
confidences.push_back(out_conf); |
|
//cout << " out class = " << vocabulary[out_class[0]] << endl; |
|
} |
|
|
|
|
|
//This must be extracted from dictionary, or just assumed to be equal for all characters |
|
vector<double> start_p(vocabulary.size()); |
|
for (int i=0; i<(int)vocabulary.size(); i++) |
|
start_p[i] = 1.0/vocabulary.size(); |
|
|
|
|
|
Mat V = Mat::zeros((int)observations.size(),(int)vocabulary.size(),CV_64FC1); |
|
vector<string> path(vocabulary.size()); |
|
|
|
// Initialize base cases (t == 0) |
|
for (int i=0; i<(int)vocabulary.size(); i++) |
|
{ |
|
for (int j=0; j<(int)observations[0].size(); j++) |
|
{ |
|
emission_p.at<double>(observations[0][j],obs[0]) = confidences[0][j]; |
|
} |
|
V.at<double>(0,i) = start_p[i] * emission_p.at<double>(i,obs[0]); |
|
path[i] = vocabulary.at(i); |
|
} |
|
|
|
|
|
// Run Viterbi for t > 0 |
|
for (int t=1; t<(int)obs.size(); t++) |
|
{ |
|
|
|
//Dude this has to be done each time!! |
|
emission_p = Mat::eye(62,62,CV_64FC1); |
|
for (int e=0; e<(int)observations[t].size(); e++) |
|
{ |
|
emission_p.at<double>(observations[t][e],obs[t]) = confidences[t][e]; |
|
} |
|
|
|
vector<string> newpath(vocabulary.size()); |
|
|
|
for (int i=0; i<(int)vocabulary.size(); i++) |
|
{ |
|
double max_prob = 0; |
|
int best_idx = 0; |
|
for (int j=0; j<(int)vocabulary.size(); j++) |
|
{ |
|
double prob = V.at<double>(t-1,j) * transition_p.at<double>(j,i) * emission_p.at<double>(i,obs[t]); |
|
if ( prob > max_prob) |
|
{ |
|
max_prob = prob; |
|
best_idx = j; |
|
} |
|
} |
|
|
|
V.at<double>(t,i) = max_prob; |
|
newpath[i] = path[best_idx] + vocabulary.at(i); |
|
} |
|
|
|
// Don't need to remember the old paths |
|
path.swap(newpath); |
|
} |
|
|
|
double max_prob = 0; |
|
int best_idx = 0; |
|
for (int i=0; i<(int)vocabulary.size(); i++) |
|
{ |
|
double prob = V.at<double>((int)obs.size()-1,i); |
|
if ( prob > max_prob) |
|
{ |
|
max_prob = prob; |
|
best_idx = i; |
|
} |
|
} |
|
|
|
//cout << path[best_idx] << endl; |
|
if (out_sequence.size()>0) out_sequence = out_sequence+" "+path[best_idx]; |
|
else out_sequence = path[best_idx]; |
|
|
|
if (component_rects != NULL) |
|
component_rects->push_back(words_rect[w]); |
|
if (component_texts != NULL) |
|
component_texts->push_back(path[best_idx]); |
|
if (component_confidences != NULL) |
|
component_confidences->push_back((float)max_prob); |
|
|
|
} |
|
|
|
return; |
|
} |
|
|
|
void run( Mat& image, |
|
Mat& mask, |
|
string& out_sequence, |
|
vector<Rect>* component_rects, |
|
vector<string>* component_texts, |
|
vector<float>* component_confidences, |
|
int component_level) |
|
{ |
|
|
|
CV_Assert( (image.type() == CV_8UC1) || (image.type() == CV_8UC3) ); |
|
CV_Assert( mask.type() == CV_8UC1 ); |
|
CV_Assert( (image.cols > 0) && (image.rows > 0) ); |
|
CV_Assert( (image.cols == mask.cols) && (image.rows == mask.rows) ); |
|
CV_Assert( component_level == OCR_LEVEL_WORD ); |
|
|
|
out_sequence.clear(); |
|
if (component_rects != NULL) |
|
component_rects->clear(); |
|
if (component_texts != NULL) |
|
component_texts->clear(); |
|
if (component_confidences != NULL) |
|
component_confidences->clear(); |
|
|
|
// First we split a line into words |
|
vector<Mat> words_mask; |
|
vector<Rect> words_rect; |
|
|
|
/// Find contours |
|
vector<vector<Point> > contours; |
|
vector<Vec4i> hierarchy; |
|
Mat tmp; |
|
mask.copyTo(tmp); |
|
findContours( tmp, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0) ); |
|
if (contours.size() < 6) |
|
{ |
|
//do not split lines with less than 6 characters |
|
words_mask.push_back(mask); |
|
words_rect.push_back(Rect(0,0,mask.cols,mask.rows)); |
|
} |
|
else |
|
{ |
|
|
|
Mat_<float> vector_w((int)mask.cols,1); |
|
reduce(mask, vector_w, 0, REDUCE_SUM, -1); |
|
|
|
vector<int> spaces; |
|
vector<int> spaces_start; |
|
vector<int> spaces_end; |
|
int space_count=0; |
|
int last_one_idx; |
|
|
|
int s_init = 0, s_end=vector_w.cols; |
|
for (int s=0; s<vector_w.cols; s++) |
|
{ |
|
if (vector_w.at<float>(0,s) == 0) |
|
s_init = s+1; |
|
else |
|
break; |
|
} |
|
for (int s=vector_w.cols-1; s>=0; s--) |
|
{ |
|
if (vector_w.at<float>(0,s) == 0) |
|
s_end = s; |
|
else |
|
break; |
|
} |
|
|
|
for (int s=s_init; s<s_end; s++) |
|
{ |
|
if (vector_w.at<float>(0,s) == 0) |
|
{ |
|
space_count++; |
|
} else { |
|
if (space_count!=0) |
|
{ |
|
spaces.push_back(space_count); |
|
spaces_start.push_back(last_one_idx); |
|
spaces_end.push_back(s-1); |
|
} |
|
space_count = 0; |
|
last_one_idx = s; |
|
} |
|
} |
|
Scalar mean_space,std_space; |
|
meanStdDev(Mat(spaces),mean_space,std_space); |
|
int num_word_spaces = 0; |
|
int last_word_space_end = 0; |
|
for (int s=0; s<(int)spaces.size(); s++) |
|
{ |
|
if (spaces_end.at(s)-spaces_start.at(s) > mean_space[0]+(mean_space[0]*1.1)) //this 1.1 is a param? |
|
{ |
|
if (num_word_spaces == 0) |
|
{ |
|
//cout << " we have a word from 0 to " << spaces_start.at(s) << endl; |
|
Mat word_mask; |
|
Rect word_rect = Rect(0,0,spaces_start.at(s),mask.rows); |
|
mask(word_rect).copyTo(word_mask); |
|
|
|
words_mask.push_back(word_mask); |
|
words_rect.push_back(word_rect); |
|
} |
|
else |
|
{ |
|
//cout << " we have a word from " << last_word_space_end << " to " << spaces_start.at(s) << endl; |
|
Mat word_mask; |
|
Rect word_rect = Rect(last_word_space_end,0,spaces_start.at(s)-last_word_space_end,mask.rows); |
|
mask(word_rect).copyTo(word_mask); |
|
|
|
words_mask.push_back(word_mask); |
|
words_rect.push_back(word_rect); |
|
} |
|
num_word_spaces++; |
|
last_word_space_end = spaces_end.at(s); |
|
} |
|
} |
|
//cout << " we have a word from " << last_word_space_end << " to " << vector_w.cols << endl << endl << endl; |
|
Mat word_mask; |
|
Rect word_rect = Rect(last_word_space_end,0,vector_w.cols-last_word_space_end,mask.rows); |
|
mask(word_rect).copyTo(word_mask); |
|
|
|
words_mask.push_back(word_mask); |
|
words_rect.push_back(word_rect); |
|
|
|
} |
|
|
|
for (int w=0; w<(int)words_mask.size(); w++) |
|
{ |
|
|
|
vector< vector<int> > observations; |
|
vector< vector<double> > confidences; |
|
vector<int> obs; |
|
// First find contours and sort by x coordinate of bbox |
|
words_mask[w].copyTo(tmp); |
|
if (tmp.empty()) |
|
continue; |
|
contours.clear(); |
|
hierarchy.clear(); |
|
/// Find contours |
|
findContours( tmp, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0) ); |
|
vector<Rect> contours_rect; |
|
for (int i=0; i<(int)contours.size(); i++) |
|
{ |
|
contours_rect.push_back(boundingRect(contours[i])); |
|
} |
|
|
|
sort(contours_rect.begin(), contours_rect.end(), sort_rect_horiz); |
|
|
|
// Do character recognition foreach contour |
|
for (int i=0; i<(int)contours.size(); i++) |
|
{ |
|
vector<int> out_class; |
|
vector<double> out_conf; |
|
//take the center of the char rect and translate it to the real origin |
|
Point char_center = Point(contours_rect.at(i).x+contours_rect.at(i).width/2, |
|
contours_rect.at(i).y+contours_rect.at(i).height/2); |
|
char_center.x += words_rect[w].x; |
|
char_center.y += words_rect[w].y; |
|
int win_size = max(contours_rect.at(i).width,contours_rect.at(i).height); |
|
win_size += (int)(win_size*0.6); // add some pixels in the border TODO: is this a parameter for the user space? |
|
Rect char_rect = Rect(char_center.x-win_size/2,char_center.y-win_size/2,win_size,win_size); |
|
char_rect &= Rect(0,0,image.cols,image.rows); |
|
Mat tmp_image; |
|
image(char_rect).copyTo(tmp_image); |
|
|
|
classifier->eval(tmp_image,out_class,out_conf); |
|
if (!out_class.empty()) |
|
obs.push_back(out_class[0]); |
|
//cout << " out class = " << vocabulary[out_class[0]] << "(" << out_conf[0] << ")" << endl; |
|
observations.push_back(out_class); |
|
confidences.push_back(out_conf); |
|
} |
|
|
|
|
|
//This must be extracted from dictionary, or just assumed to be equal for all characters |
|
vector<double> start_p(vocabulary.size()); |
|
for (int i=0; i<(int)vocabulary.size(); i++) |
|
start_p[i] = 1.0/vocabulary.size(); |
|
|
|
|
|
Mat V = Mat::zeros((int)observations.size(),(int)vocabulary.size(),CV_64FC1); |
|
vector<string> path(vocabulary.size()); |
|
|
|
// Initialize base cases (t == 0) |
|
for (int i=0; i<(int)vocabulary.size(); i++) |
|
{ |
|
for (int j=0; j<(int)observations[0].size(); j++) |
|
{ |
|
emission_p.at<double>(observations[0][j],obs[0]) = confidences[0][j]; |
|
} |
|
V.at<double>(0,i) = start_p[i] * emission_p.at<double>(i,obs[0]); |
|
path[i] = vocabulary.at(i); |
|
} |
|
|
|
|
|
// Run Viterbi for t > 0 |
|
for (int t=1; t<(int)obs.size(); t++) |
|
{ |
|
|
|
//Dude this has to be done each time!! |
|
emission_p = Mat::eye(62,62,CV_64FC1); |
|
for (int e=0; e<(int)observations[t].size(); e++) |
|
{ |
|
emission_p.at<double>(observations[t][e],obs[t]) = confidences[t][e]; |
|
} |
|
|
|
vector<string> newpath(vocabulary.size()); |
|
|
|
for (int i=0; i<(int)vocabulary.size(); i++) |
|
{ |
|
double max_prob = 0; |
|
int best_idx = 0; |
|
for (int j=0; j<(int)vocabulary.size(); j++) |
|
{ |
|
double prob = V.at<double>(t-1,j) * transition_p.at<double>(j,i) * emission_p.at<double>(i,obs[t]); |
|
if ( prob > max_prob) |
|
{ |
|
max_prob = prob; |
|
best_idx = j; |
|
} |
|
} |
|
|
|
V.at<double>(t,i) = max_prob; |
|
newpath[i] = path[best_idx] + vocabulary.at(i); |
|
} |
|
|
|
// Don't need to remember the old paths |
|
path.swap(newpath); |
|
} |
|
|
|
double max_prob = 0; |
|
int best_idx = 0; |
|
for (int i=0; i<(int)vocabulary.size(); i++) |
|
{ |
|
double prob = V.at<double>((int)obs.size()-1,i); |
|
if ( prob > max_prob) |
|
{ |
|
max_prob = prob; |
|
best_idx = i; |
|
} |
|
} |
|
|
|
//cout << path[best_idx] << endl; |
|
if (out_sequence.size()>0) out_sequence = out_sequence+" "+path[best_idx]; |
|
else out_sequence = path[best_idx]; |
|
|
|
if (component_rects != NULL) |
|
component_rects->push_back(words_rect[w]); |
|
if (component_texts != NULL) |
|
component_texts->push_back(path[best_idx]); |
|
if (component_confidences != NULL) |
|
component_confidences->push_back((float)max_prob); |
|
|
|
} |
|
|
|
return; |
|
} |
|
}; |
|
|
|
Ptr<OCRHMMDecoder> OCRHMMDecoder::create( Ptr<OCRHMMDecoder::ClassifierCallback> _classifier, |
|
const string& _vocabulary, |
|
InputArray transition_p, |
|
InputArray emission_p, |
|
decoder_mode _mode) |
|
{ |
|
return makePtr<OCRHMMDecoderImpl>(_classifier, _vocabulary, transition_p, emission_p, _mode); |
|
} |
|
|
|
|
|
Ptr<OCRHMMDecoder> OCRHMMDecoder::create( Ptr<OCRHMMDecoder::ClassifierCallback> _classifier, |
|
const String& _vocabulary, |
|
InputArray transition_p, |
|
InputArray emission_p, |
|
int _mode) |
|
{ |
|
return makePtr<OCRHMMDecoderImpl>(_classifier, _vocabulary, transition_p, emission_p, (decoder_mode)_mode); |
|
} |
|
|
|
|
|
class CV_EXPORTS OCRHMMClassifierKNN : public OCRHMMDecoder::ClassifierCallback |
|
{ |
|
public: |
|
//constructor |
|
OCRHMMClassifierKNN(const std::string& filename); |
|
// Destructor |
|
~OCRHMMClassifierKNN() {} |
|
|
|
void eval( InputArray mask, vector<int>& out_class, vector<double>& out_confidence ); |
|
private: |
|
Ptr<KNearest> knn; |
|
}; |
|
|
|
OCRHMMClassifierKNN::OCRHMMClassifierKNN (const string& filename) |
|
{ |
|
knn = KNearest::create(); |
|
if (ifstream(filename.c_str())) |
|
{ |
|
Mat hus, labels; |
|
cv::FileStorage storage(filename.c_str(), cv::FileStorage::READ); |
|
storage["hus"] >> hus; |
|
storage["labels"] >> labels; |
|
storage.release(); |
|
knn->train(hus, ROW_SAMPLE, labels); |
|
} |
|
else |
|
CV_Error(Error::StsBadArg, "Default classifier data file not found!"); |
|
} |
|
|
|
void OCRHMMClassifierKNN::eval( InputArray _mask, vector<int>& out_class, vector<double>& out_confidence ) |
|
{ |
|
CV_Assert( _mask.getMat().type() == CV_8UC1 ); |
|
|
|
out_class.clear(); |
|
out_confidence.clear(); |
|
|
|
int image_height = 35; |
|
int image_width = 35; |
|
int num_features = 200; |
|
|
|
Mat img = _mask.getMat(); |
|
Mat tmp; |
|
img.copyTo(tmp); |
|
|
|
vector<vector<Point> > contours; |
|
vector<Vec4i> hierarchy; |
|
/// Find contours |
|
findContours( tmp, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0) ); |
|
|
|
if (contours.empty()) |
|
return; |
|
|
|
int idx = 0; |
|
if (contours.size() > 1) |
|
{ |
|
// this is to make sure we have the mask with a single contour |
|
// e.g "i" and "j" have two contours, but it may be also a part of a neighbour character |
|
// we take the larger one and clean the outside in order to have a single contour |
|
int max_area = 0; |
|
for (int cc=0; cc<(int)contours.size(); cc++) |
|
{ |
|
int area_c = boundingRect(contours[cc]).area(); |
|
if ( area_c > max_area) |
|
{ |
|
idx = cc; |
|
max_area = area_c; |
|
} |
|
} |
|
|
|
// clean-up the outside of the contour |
|
Mat tmp_c = Mat::zeros(tmp.rows, tmp.cols, CV_8UC1); |
|
drawContours(tmp_c, contours, idx, Scalar(255), FILLED); |
|
img = img & tmp_c; |
|
} |
|
Rect bbox = boundingRect(contours[idx]); |
|
|
|
//Crop to fit the exact rect of the contour and resize to a fixed-sized matrix of 35 x 35 pixel, while retaining the centroid of the region and aspect ratio. |
|
Mat mask = Mat::zeros(image_height,image_width,CV_8UC1); |
|
img(bbox).copyTo(tmp); |
|
|
|
|
|
if (tmp.cols>tmp.rows) |
|
{ |
|
int height = image_width*tmp.rows/tmp.cols; |
|
if(height == 0) height = 1; |
|
resize(tmp,tmp,Size(image_width,height)); |
|
tmp.copyTo(mask(Rect(0,(image_height-height)/2,image_width,height))); |
|
} |
|
else |
|
{ |
|
int width = image_height*tmp.cols/tmp.rows; |
|
if(width == 0) width = 1; |
|
resize(tmp,tmp,Size(width,image_height)); |
|
tmp.copyTo(mask(Rect((image_width-width)/2,0,width,image_height))); |
|
} |
|
|
|
//find contours again (now resized) |
|
mask.copyTo(tmp); |
|
findContours( tmp, contours, hierarchy, RETR_LIST, CHAIN_APPROX_SIMPLE, Point(0, 0) ); |
|
|
|
vector<Mat> maps; |
|
for (int i=0; i<8; i++) |
|
{ |
|
Mat map = Mat::zeros(image_height,image_width,CV_8UC1); |
|
maps.push_back(map); |
|
} |
|
for (int c=0; c<(int)contours.size(); c++) |
|
{ |
|
for (int i=0; i<(int)contours[c].size(); i++) |
|
{ |
|
//cout << contours[c][i] << " -- " << contours[c][(i+1)%contours[c].size()] << endl; |
|
double dy = contours[c][i].y - contours[c][(i+1)%contours[c].size()].y; |
|
double dx = contours[c][i].x - contours[c][(i+1)%contours[c].size()].x; |
|
double angle = atan2 (dy,dx) * 180 / 3.14159265; |
|
//cout << " angle = " << angle << endl; |
|
int idx_a = 0; |
|
if ((angle>=157.5)||(angle<=-157.5)) |
|
idx_a = 0; |
|
else if ((angle>=-157.5)&&(angle<=-112.5)) |
|
idx_a = 1; |
|
else if ((angle>=-112.5)&&(angle<=-67.5)) |
|
idx_a = 2; |
|
else if ((angle>=-67.5)&&(angle<=-22.5)) |
|
idx_a = 3; |
|
else if ((angle>=-22.5)&&(angle<=22.5)) |
|
idx_a = 4; |
|
else if ((angle>=22.5)&&(angle<=67.5)) |
|
idx_a = 5; |
|
else if ((angle>=67.5)&&(angle<=112.5)) |
|
idx_a = 6; |
|
else if ((angle>=112.5)&&(angle<=157.5)) |
|
idx_a = 7; |
|
|
|
line(maps[idx_a],contours[c][i],contours[c][(i+1)%contours[c].size()],Scalar(255)); |
|
} |
|
} |
|
|
|
//On each bitmap a regular 7x7 Gaussian masks are evenly placed |
|
for (int i=0; i<(int)maps.size(); i++) |
|
{ |
|
copyMakeBorder(maps[i],maps[i],7,7,7,7,BORDER_CONSTANT,Scalar(0)); |
|
GaussianBlur(maps[i], maps[i], Size(7,7), 2, 2); |
|
normalize(maps[i],maps[i],0,255,NORM_MINMAX); |
|
resize(maps[i],maps[i],Size(image_width,image_height)); |
|
} |
|
|
|
//Generate features for each bitmap |
|
Mat sample = Mat(1,num_features,CV_32FC1); |
|
Mat patch; |
|
for (int i=0; i<(int)maps.size(); i++) |
|
{ |
|
for(int y=0; y<image_height; y=y+7) |
|
{ |
|
for(int x=0; x<image_width; x=x+7) |
|
{ |
|
maps[i](Rect(x,y,7,7)).copyTo(patch); |
|
Scalar mean,std; |
|
meanStdDev(patch,mean,std); |
|
sample.at<float>(0,i*25+((int)x/7)+((int)y/7)*5) = (float)(mean[0]/255); |
|
//cout << " avg " << mean[0] << " in patch " << x << "," << y << " channel " << i << " idx = " << i*25+((int)x/7)+((int)y/7)*5<< endl; |
|
} |
|
} |
|
} |
|
|
|
Mat responses,dists,predictions; |
|
knn->findNearest( sample, 11, predictions, responses, dists); |
|
|
|
Scalar dist_sum = sum(dists); |
|
Mat class_predictions = Mat::zeros(1,62,CV_64FC1); |
|
|
|
vector<vector<int> > equivalency_mat(62); |
|
equivalency_mat[2].push_back(28); // c -> C |
|
equivalency_mat[28].push_back(2); // C -> c |
|
equivalency_mat[8].push_back(34); // i -> I |
|
equivalency_mat[8].push_back(11); // i -> l |
|
equivalency_mat[11].push_back(8); // l -> i |
|
equivalency_mat[11].push_back(34); // l -> I |
|
equivalency_mat[34].push_back(8); // I -> i |
|
equivalency_mat[34].push_back(11); // I -> l |
|
equivalency_mat[9].push_back(35); // j -> J |
|
equivalency_mat[35].push_back(9); // J -> j |
|
equivalency_mat[14].push_back(40); // o -> O |
|
equivalency_mat[14].push_back(52); // o -> 0 |
|
equivalency_mat[40].push_back(14); // O -> o |
|
equivalency_mat[40].push_back(52); // O -> 0 |
|
equivalency_mat[52].push_back(14); // 0 -> o |
|
equivalency_mat[52].push_back(40); // 0 -> O |
|
equivalency_mat[15].push_back(41); // p -> P |
|
equivalency_mat[41].push_back(15); // P -> p |
|
equivalency_mat[18].push_back(44); // s -> S |
|
equivalency_mat[44].push_back(18); // S -> s |
|
equivalency_mat[20].push_back(46); // u -> U |
|
equivalency_mat[46].push_back(20); // U -> u |
|
equivalency_mat[21].push_back(47); // v -> V |
|
equivalency_mat[47].push_back(21); // V -> v |
|
equivalency_mat[22].push_back(48); // w -> W |
|
equivalency_mat[48].push_back(22); // W -> w |
|
equivalency_mat[23].push_back(49); // x -> X |
|
equivalency_mat[49].push_back(23); // X -> x |
|
equivalency_mat[25].push_back(51); // z -> Z |
|
equivalency_mat[51].push_back(25); // Z -> z |
|
|
|
|
|
for (int j=0; j<responses.cols; j++) |
|
{ |
|
if (responses.at<float>(0,j)<0) |
|
continue; |
|
class_predictions.at<double>(0,(int)responses.at<float>(0,j)) += dists.at<float>(0,j); |
|
for (int e=0; e<(int)equivalency_mat[(int)responses.at<float>(0,j)].size(); e++) |
|
{ |
|
class_predictions.at<double>(0,equivalency_mat[(int)responses.at<float>(0,j)][e]) += dists.at<float>(0,j); |
|
dist_sum[0] += dists.at<float>(0,j); |
|
} |
|
} |
|
|
|
class_predictions = class_predictions/dist_sum[0]; |
|
|
|
out_class.push_back((int)predictions.at<float>(0,0)); |
|
out_confidence.push_back(class_predictions.at<double>(0,(int)predictions.at<float>(0,0))); |
|
|
|
for (int i=0; i<class_predictions.cols; i++) |
|
{ |
|
if ((class_predictions.at<double>(0,i) > 0) && (i != out_class[0])) |
|
{ |
|
out_class.push_back(i); |
|
out_confidence.push_back(class_predictions.at<double>(0,i)); |
|
} |
|
} |
|
|
|
} |
|
|
|
|
|
Ptr<OCRHMMDecoder::ClassifierCallback> loadOCRHMMClassifierNM(const String& filename) |
|
|
|
{ |
|
return makePtr<OCRHMMClassifierKNN>(std::string(filename)); |
|
} |
|
|
|
class CV_EXPORTS OCRHMMClassifierCNN : public OCRHMMDecoder::ClassifierCallback |
|
{ |
|
public: |
|
//constructor |
|
OCRHMMClassifierCNN(const std::string& filename); |
|
// Destructor |
|
~OCRHMMClassifierCNN() {} |
|
|
|
void eval( InputArray image, vector<int>& out_class, vector<double>& out_confidence ); |
|
|
|
protected: |
|
void normalizeAndZCA(Mat& patches); |
|
double eval_feature(Mat& feature, double* prob_estimates); |
|
|
|
private: |
|
int nr_class; // number of classes |
|
int nr_feature; // number of features |
|
Mat feature_min; // scale range |
|
Mat feature_max; |
|
Mat weights; // Logistic Regression weights |
|
Mat kernels; // CNN kernels |
|
Mat M, P; // ZCA Whitening parameters |
|
int window_size; // window size |
|
int quad_size; |
|
int patch_size; |
|
int num_quads; // extract 25 quads (12x12) from each image |
|
int num_tiles; // extract 25 patches (8x8) from each quad |
|
double alpha; // used in non-linear activation function z = max(0, |D*a| - alpha) |
|
}; |
|
|
|
OCRHMMClassifierCNN::OCRHMMClassifierCNN (const string& filename) |
|
{ |
|
if (ifstream(filename.c_str())) |
|
{ |
|
FileStorage fs(filename, FileStorage::READ); |
|
// Load kernels bank and withenning params |
|
fs["kernels"] >> kernels; |
|
fs["M"] >> M; |
|
fs["P"] >> P; |
|
// Load Logistic Regression weights |
|
fs["weights"] >> weights; |
|
// Load feature scaling ranges |
|
fs["feature_min"] >> feature_min; |
|
fs["feature_max"] >> feature_max; |
|
fs.release(); |
|
} |
|
else |
|
CV_Error(Error::StsBadArg, "Default classifier data file not found!"); |
|
|
|
// check all matrix dimensions match correctly and no one is empty |
|
CV_Assert( (M.cols > 0) && (M.rows > 0) ); |
|
CV_Assert( (P.cols > 0) && (P.rows > 0) ); |
|
CV_Assert( (kernels.cols > 0) && (kernels.rows > 0) ); |
|
CV_Assert( (weights.cols > 0) && (weights.rows > 0) ); |
|
CV_Assert( (feature_min.cols > 0) && (feature_min.rows > 0) ); |
|
CV_Assert( (feature_max.cols > 0) && (feature_max.rows > 0) ); |
|
|
|
nr_feature = weights.rows; |
|
nr_class = weights.cols; |
|
patch_size = (int)sqrt(kernels.cols); |
|
// algorithm internal parameters |
|
window_size = 32; |
|
num_quads = 25; |
|
num_tiles = 25; |
|
quad_size = 12; |
|
alpha = 0.5; |
|
} |
|
|
|
void OCRHMMClassifierCNN::eval( InputArray _src, vector<int>& out_class, vector<double>& out_confidence ) |
|
{ |
|
|
|
CV_Assert(( _src.getMat().type() == CV_8UC3 ) || ( _src.getMat().type() == CV_8UC1 )); |
|
|
|
out_class.clear(); |
|
out_confidence.clear(); |
|
|
|
|
|
Mat img = _src.getMat(); |
|
if(img.type() == CV_8UC3) |
|
{ |
|
cvtColor(img,img,COLOR_RGB2GRAY); |
|
} |
|
|
|
// shall we resize the input image or make a copy ? |
|
resize(img,img,Size(window_size,window_size)); |
|
|
|
Mat quad; |
|
Mat tmp; |
|
|
|
int patch_count = 0; |
|
vector< vector<double> > data_pool(9); |
|
|
|
|
|
int quad_id = 1; |
|
for (int q_x=0; q_x<=window_size-quad_size; q_x=q_x+(int)(quad_size/2-1)) |
|
{ |
|
for (int q_y=0; q_y<=window_size-quad_size; q_y=q_y+(int)(quad_size/2-1)) |
|
{ |
|
Rect quad_rect = Rect(q_x,q_y,quad_size,quad_size); |
|
quad = img(quad_rect); |
|
|
|
//start sliding window (8x8) in each tile and store the patch as row in data_pool |
|
for (int w_x=0; w_x<=quad_size-patch_size; w_x++) |
|
{ |
|
for (int w_y=0; w_y<=quad_size-patch_size; w_y++) |
|
{ |
|
quad(Rect(w_x,w_y,patch_size,patch_size)).copyTo(tmp); |
|
tmp = tmp.reshape(0,1); |
|
tmp.convertTo(tmp, CV_64F); |
|
normalizeAndZCA(tmp); |
|
vector<double> patch; |
|
tmp.copyTo(patch); |
|
if ((quad_id == 1)||(quad_id == 2)||(quad_id == 6)||(quad_id == 7)) |
|
data_pool[0].insert(data_pool[0].end(),patch.begin(),patch.end()); |
|
if ((quad_id == 2)||(quad_id == 7)||(quad_id == 3)||(quad_id == 8)||(quad_id == 4)||(quad_id == 9)) |
|
data_pool[1].insert(data_pool[1].end(),patch.begin(),patch.end()); |
|
if ((quad_id == 4)||(quad_id == 9)||(quad_id == 5)||(quad_id == 10)) |
|
data_pool[2].insert(data_pool[2].end(),patch.begin(),patch.end()); |
|
if ((quad_id == 6)||(quad_id == 11)||(quad_id == 16)||(quad_id == 7)||(quad_id == 12)||(quad_id == 17)) |
|
data_pool[3].insert(data_pool[3].end(),patch.begin(),patch.end()); |
|
if ((quad_id == 7)||(quad_id == 12)||(quad_id == 17)||(quad_id == 8)||(quad_id == 13)||(quad_id == 18)||(quad_id == 9)||(quad_id == 14)||(quad_id == 19)) |
|
data_pool[4].insert(data_pool[4].end(),patch.begin(),patch.end()); |
|
if ((quad_id == 9)||(quad_id == 14)||(quad_id == 19)||(quad_id == 10)||(quad_id == 15)||(quad_id == 20)) |
|
data_pool[5].insert(data_pool[5].end(),patch.begin(),patch.end()); |
|
if ((quad_id == 16)||(quad_id == 21)||(quad_id == 17)||(quad_id == 22)) |
|
data_pool[6].insert(data_pool[6].end(),patch.begin(),patch.end()); |
|
if ((quad_id == 17)||(quad_id == 22)||(quad_id == 18)||(quad_id == 23)||(quad_id == 19)||(quad_id == 24)) |
|
data_pool[7].insert(data_pool[7].end(),patch.begin(),patch.end()); |
|
if ((quad_id == 19)||(quad_id == 24)||(quad_id == 20)||(quad_id == 25)) |
|
data_pool[8].insert(data_pool[8].end(),patch.begin(),patch.end()); |
|
patch_count++; |
|
} |
|
} |
|
|
|
quad_id++; |
|
} |
|
} |
|
|
|
//do dot product of each normalized and whitened patch |
|
//each pool is averaged and this yields a representation of 9xD |
|
Mat feature = Mat::zeros(9,kernels.rows,CV_64FC1); |
|
for (int i=0; i<9; i++) |
|
{ |
|
Mat pool = Mat(data_pool[i]); |
|
pool = pool.reshape(0,(int)data_pool[i].size()/kernels.cols); |
|
for (int p=0; p<pool.rows; p++) |
|
{ |
|
for (int f=0; f<kernels.rows; f++) |
|
{ |
|
feature.row(i).at<double>(0,f) = feature.row(i).at<double>(0,f) + max(0.0,std::abs(pool.row(p).dot(kernels.row(f)))-alpha); |
|
} |
|
} |
|
} |
|
feature = feature.reshape(0,1); |
|
|
|
|
|
// data must be normalized within the range obtained during training |
|
double lower = -1.0; |
|
double upper = 1.0; |
|
for (int k=0; k<feature.cols; k++) |
|
{ |
|
feature.at<double>(0,k) = lower + (upper-lower) * |
|
(feature.at<double>(0,k)-feature_min.at<double>(0,k))/ |
|
(feature_max.at<double>(0,k)-feature_min.at<double>(0,k)); |
|
} |
|
|
|
double *p = new double[nr_class]; |
|
double predict_label = eval_feature(feature,p); |
|
//cout << " Prediction: " << vocabulary[predict_label] << " with probability " << p[0] << endl; |
|
if (predict_label < 0) |
|
CV_Error(Error::StsInternal, "OCRHMMClassifierCNN::eval Error: unexpected prediction in eval_feature()"); |
|
|
|
out_class.push_back((int)predict_label); |
|
out_confidence.push_back(p[(int)predict_label]); |
|
|
|
for (int i = 0; i<nr_class; i++) |
|
{ |
|
if ( (i != (int)predict_label) && (p[i] != 0.) ) |
|
{ |
|
out_class.push_back(i); |
|
out_confidence.push_back(p[i]); |
|
} |
|
} |
|
|
|
|
|
} |
|
|
|
// normalize for contrast and apply ZCA whitening to a set of image patches |
|
void OCRHMMClassifierCNN::normalizeAndZCA(Mat& patches) |
|
{ |
|
|
|
//Normalize for contrast |
|
for (int i=0; i<patches.rows; i++) |
|
{ |
|
Scalar row_mean, row_std; |
|
meanStdDev(patches.row(i),row_mean,row_std); |
|
row_std[0] = sqrt(pow(row_std[0],2)*patches.cols/(patches.cols-1)+10); |
|
patches.row(i) = (patches.row(i) - row_mean[0]) / row_std[0]; |
|
} |
|
|
|
|
|
//ZCA whitening |
|
if ((M.dims == 0) || (P.dims == 0)) |
|
{ |
|
Mat CC; |
|
calcCovarMatrix(patches,CC,M,COVAR_NORMAL|COVAR_ROWS|COVAR_SCALE); |
|
CC = CC * patches.rows / (patches.rows-1); |
|
|
|
|
|
Mat e_val,e_vec; |
|
eigen(CC.t(),e_val,e_vec); |
|
e_vec = e_vec.t(); |
|
sqrt(1./(e_val + 0.1), e_val); |
|
|
|
|
|
Mat V = Mat::zeros(e_vec.rows, e_vec.cols, CV_64FC1); |
|
Mat D = Mat::eye(e_vec.rows, e_vec.cols, CV_64FC1); |
|
|
|
for (int i=0; i<e_vec.cols; i++) |
|
{ |
|
e_vec.col(e_vec.cols-i-1).copyTo(V.col(i)); |
|
D.col(i) = D.col(i) * e_val.at<double>(0,e_val.rows-i-1); |
|
} |
|
|
|
P = V * D * V.t(); |
|
} |
|
|
|
for (int i=0; i<patches.rows; i++) |
|
patches.row(i) = patches.row(i) - M; |
|
|
|
patches = patches * P; |
|
|
|
} |
|
|
|
double OCRHMMClassifierCNN::eval_feature(Mat& feature, double* prob_estimates) |
|
{ |
|
for(int i=0;i<nr_class;i++) |
|
prob_estimates[i] = 0; |
|
|
|
for(int idx=0; idx<nr_feature; idx++) |
|
for(int i=0;i<nr_class;i++) |
|
prob_estimates[i] += weights.at<float>(idx,i)*feature.at<double>(0,idx); //TODO use vectorized dot product |
|
|
|
int dec_max_idx = 0; |
|
for(int i=1;i<nr_class;i++) |
|
{ |
|
if(prob_estimates[i] > prob_estimates[dec_max_idx]) |
|
dec_max_idx = i; |
|
} |
|
|
|
for(int i=0;i<nr_class;i++) |
|
prob_estimates[i]=1/(1+exp(-prob_estimates[i])); |
|
|
|
double sum=0; |
|
for(int i=0; i<nr_class; i++) |
|
sum+=prob_estimates[i]; |
|
|
|
for(int i=0; i<nr_class; i++) |
|
prob_estimates[i]=prob_estimates[i]/sum; |
|
|
|
return dec_max_idx; |
|
} |
|
|
|
|
|
Ptr<OCRHMMDecoder::ClassifierCallback> loadOCRHMMClassifierCNN(const String& filename) |
|
|
|
{ |
|
return makePtr<OCRHMMClassifierCNN>(std::string(filename)); |
|
} |
|
|
|
/** @brief Utility function to create a tailored language model transitions table from a given list of words (lexicon). |
|
|
|
@param vocabulary The language vocabulary (chars when ascii english text). |
|
|
|
@param lexicon The list of words that are expected to be found in a particular image. |
|
|
|
@param transition_probabilities_table Output table with transition probabilities between character pairs. cols == rows == vocabulary.size(). |
|
|
|
The function calculate frequency statistics of character pairs from the given lexicon and fills |
|
the output transition_probabilities_table with them. |
|
The transition_probabilities_table can be used as input in the OCRHMMDecoder::create() and OCRBeamSearchDecoder::create() methods. |
|
@note |
|
- (C++) An alternative would be to load the default generic language transition table provided in the text module samples folder (created from ispell 42869 english words list) : |
|
<https://github.com/Itseez/opencv_contrib/blob/master/modules/text/samples/OCRHMM_transitions_table.xml> |
|
*/ |
|
void createOCRHMMTransitionsTable(string& vocabulary, vector<string>& lexicon, OutputArray _transitions) |
|
{ |
|
|
|
|
|
CV_Assert( vocabulary.size() > 0 ); |
|
CV_Assert( lexicon.size() > 0 ); |
|
|
|
if ( (_transitions.getMat().cols != (int)vocabulary.size()) || |
|
(_transitions.getMat().rows != (int)vocabulary.size()) || |
|
(_transitions.getMat().type() != CV_64F) ) |
|
{ |
|
_transitions.create((int)vocabulary.size(), (int)vocabulary.size(), CV_64F); |
|
} |
|
|
|
Mat transitions = _transitions.getMat(); |
|
transitions = Scalar(0); |
|
Mat count_pairs = Mat::zeros(1, (int)vocabulary.size(), CV_64F); |
|
|
|
for (size_t w=0; w<lexicon.size(); w++) |
|
{ |
|
for (size_t i=0,j=1; i<lexicon[w].size()-1; i++,j++) |
|
{ |
|
size_t idx_i = vocabulary.find(lexicon[w][i]); |
|
size_t idx_j = vocabulary.find(lexicon[w][j]); |
|
if ((idx_i == string::npos) || (idx_j == string::npos)) |
|
{ |
|
CV_Error(Error::StsBadArg, "Found a non-vocabulary char in lexicon!"); |
|
} |
|
transitions.at<double>((int)idx_i,(int)idx_j) += 1; |
|
count_pairs.at<double>(0,(int)idx_i) += 1; |
|
} |
|
} |
|
|
|
for (int i=0; i<transitions.rows; i++) |
|
{ |
|
transitions.row(i) = transitions.row(i) / count_pairs.at<double>(0,i); //normalize |
|
} |
|
|
|
return; |
|
} |
|
|
|
Mat createOCRHMMTransitionsTable(const String& vocabulary, vector<cv::String>& lexicon) |
|
{ |
|
std::string voc(vocabulary); |
|
vector<string> lex; |
|
for(vector<cv::String>::iterator l = lexicon.begin(); l != lexicon.end(); l++) |
|
lex.push_back(std::string(*l)); |
|
|
|
Mat _transitions; |
|
createOCRHMMTransitionsTable(voc, lex, _transitions); |
|
return _transitions; |
|
} |
|
|
|
} |
|
}
|
|
|