Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

80 lines
2.2 KiB

#include "perf_precomp.hpp"
namespace cvtest
{
using std::tr1::tuple;
using std::tr1::get;
using std::tr1::make_tuple;
using std::make_pair;
using namespace perf;
using namespace testing;
using namespace cv;
using namespace cv::dnn;
enum {STRIDE_OFF = 1, STRIDE_ON = 2};
CV_ENUM(StrideSize, STRIDE_OFF, STRIDE_ON);
enum {GROUP_OFF = 1, GROUP_2 = 2};
CV_ENUM(GroupSize, GROUP_OFF, GROUP_2);
//Squared Size
#define SSZ(n) cv::Size(n, n)
typedef std::pair<BlobShape, int> InpShapeNumOut;
typedef tuple<Size, InpShapeNumOut, GroupSize, StrideSize> ConvParam; //kernel_size, inp shape, groups, stride
typedef TestBaseWithParam<ConvParam> ConvolutionPerfTest;
PERF_TEST_P( ConvolutionPerfTest, perf, Combine(
Values(Size(1, 1), Size(3, 3), Size(5, 5), Size(11, 11)),
Values(make_pair(BlobShape(1, 4, 224, 224), 64),
make_pair(BlobShape(1, 64, 112, 122), 128),
make_pair(BlobShape(1, 256, 28, 28), 512)),
GroupSize::all(),
StrideSize::all())
)
{
RNG rng(0);
ConvParam params = GetParam();
int ksz = get<0>(params).width;
BlobShape inpShape = get<1>(params).first;
int outCn = get<1>(params).second;
int groups = get<2>(params);
int stride = (ksz >= 11) ? 4 : get<3>(params);
int inpCn = inpShape[1];
Blob wgtBlob(BlobShape(outCn, inpCn/groups, ksz, ksz)), biasBlob(BlobShape(outCn, 1, 1, 1));
Blob inpBlob(inpShape);
rng.fill(biasBlob.matRef(), RNG::UNIFORM, -1, +1);
rng.fill(wgtBlob.matRef(), RNG::UNIFORM, -1, +1);
rng.fill(inpBlob.matRef(), RNG::UNIFORM, -1, +1);
LayerParams lp;
lp.set("num_output", outCn);
lp.set("group", groups);
lp.set("stride", stride);
lp.set("kernel_size", ksz);
lp.blobs.reserve(2);
lp.blobs.push_back(wgtBlob);
lp.blobs.push_back(biasBlob);
std::vector<Blob*> inpBlobs(1, &inpBlob);
std::vector<Blob> outBlobs;
cv::setNumThreads(cv::getNumberOfCPUs());
Ptr<Layer> layer = cv::dnn::LayerFactory::createLayerInstance("Convolution", lp);
layer->allocate(inpBlobs, outBlobs);
declare.in(inpBlob.matRef(), wgtBlob.matRef(), WARMUP_RNG).out(outBlobs[0].matRef()).tbb_threads(cv::getNumThreads());
TEST_CYCLE_N(10)
{
layer->forward(inpBlobs, outBlobs);
}
SANITY_CHECK_NOTHING();
}
}