176 lines
4.8 KiB
176 lines
4.8 KiB
/* |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright (c) 2009, Willow Garage, Inc. |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above |
|
* copyright notice, this list of conditions and the following |
|
* disclaimer in the documentation and/or other materials provided |
|
* with the distribution. |
|
* * Neither the name of Willow Garage, Inc. nor the names of its |
|
* contributors may be used to endorse or promote products derived |
|
* from this software without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::sfm; |
|
using namespace cvtest; |
|
using namespace std; |
|
|
|
TEST(Sfm_fundamental, fundamentalFromProjections) |
|
{ |
|
double tolerance_prop = 1e-7; |
|
double tolerance_near = 1e-15; |
|
|
|
Matx34d P1_gt, P2_gt; |
|
P1_gt << 1, 0, 0, 0, |
|
0, 1, 0, 0, |
|
0, 0, 1, 0; |
|
P2_gt << 1, 1, 1, 3, |
|
0, 2, 0, 3, |
|
0, 1, 1, 0; |
|
|
|
Matx33d F_gt; |
|
fundamentalFromProjections(P1_gt, P2_gt, F_gt); |
|
|
|
Matx34d P1, P2; |
|
projectionsFromFundamental(F_gt, P1, P2); |
|
|
|
Matx33d F; |
|
fundamentalFromProjections(P1, P2, F); |
|
|
|
Matx33d F_gt_norm, F_norm; |
|
normalizeFundamental(F_gt, F_gt_norm); |
|
normalizeFundamental(F, F_norm); |
|
|
|
EXPECT_MATRIX_PROP(F_gt, F, tolerance_prop); |
|
EXPECT_MATRIX_NEAR(F_gt_norm, F_norm, tolerance_near); |
|
} |
|
|
|
|
|
TEST(Sfm_fundamental, normalizedEightPointSolver) |
|
{ |
|
double tolerance = 1e-14; |
|
|
|
TwoViewDataSet d; |
|
generateTwoViewRandomScene( d ); |
|
|
|
Matx33d F; |
|
normalizedEightPointSolver( d.x1, d.x2, F ); |
|
expectFundamentalProperties( F, d.x1, d.x2, tolerance ); |
|
} |
|
|
|
|
|
TEST(Sfm_fundamental, motionFromEssential) |
|
{ |
|
double tolerance = 1e-8; |
|
|
|
cvtest::TwoViewDataSet d; |
|
generateTwoViewRandomScene(d); |
|
|
|
Matx33d E; |
|
essentialFromRt(d.R1, d.t1, d.R2, d.t2, E); |
|
|
|
Matx33d R; |
|
cv::Vec3d t; |
|
relativeCameraMotion(d.R1, d.t1, d.R2, d.t2, R, t); |
|
cv::normalize(t, t); |
|
|
|
std::vector<Mat> Rs; |
|
std::vector<cv::Mat> ts; |
|
motionFromEssential(E, Rs, ts); |
|
bool one_solution_is_correct = false; |
|
for ( int i = 0; i < Rs.size(); ++i ) |
|
{ |
|
if ( (norm(Rs[i], R) < tolerance) && (norm(ts[i], t) < tolerance) ) |
|
{ |
|
one_solution_is_correct = true; |
|
break; |
|
} |
|
} |
|
EXPECT_TRUE(one_solution_is_correct); |
|
} |
|
|
|
|
|
TEST(Sfm_fundamental, fundamentalToAndFromEssential) |
|
{ |
|
double tolerance = 1e-15; |
|
TwoViewDataSet d; |
|
generateTwoViewRandomScene(d); |
|
|
|
Matx33d F, E; |
|
essentialFromFundamental(d.F, d.K1, d.K2, E); |
|
fundamentalFromEssential(E, d.K1, d.K2, F); |
|
|
|
Matx33d F_gt_norm, F_norm; |
|
normalizeFundamental(d.F, F_gt_norm); |
|
normalizeFundamental(F, F_norm); |
|
|
|
EXPECT_MATRIX_NEAR(F_gt_norm, F_norm, tolerance); |
|
} |
|
|
|
|
|
TEST(Sfm_fundamental, essentialFromFundamental) |
|
{ |
|
TwoViewDataSet d; |
|
generateTwoViewRandomScene(d); |
|
|
|
Matx33d E_from_Rt; |
|
essentialFromRt(d.R1, d.t1, d.R2, d.t2, E_from_Rt); |
|
|
|
Matx33d E_from_F; |
|
essentialFromFundamental(d.F, d.K1, d.K2, E_from_F); |
|
|
|
EXPECT_MATRIX_PROP(E_from_Rt, E_from_F, 1e-6); |
|
} |
|
|
|
|
|
TEST(Sfm_fundamental, motionFromEssentialChooseSolution) |
|
{ |
|
TwoViewDataSet d; |
|
generateTwoViewRandomScene(d); |
|
|
|
Matx33d E; |
|
essentialFromRt(d.R1, d.t1, d.R2, d.t2, E); |
|
|
|
Matx33d R; |
|
cv::Vec3d t; |
|
relativeCameraMotion(d.R1, d.t1, d.R2, d.t2, R, t); |
|
normalize(t, t); |
|
|
|
std::vector < Mat > Rs; |
|
std::vector < cv::Mat > ts; |
|
motionFromEssential(E, Rs, ts); |
|
|
|
cv::Vec2d x1(d.x1(0, 0), d.x1(1, 0)); |
|
cv::Vec2d x2(d.x2(0, 0), d.x2(1, 0)); |
|
int solution = motionFromEssentialChooseSolution(Rs, ts, d.K1, x1, d.K2, x2); |
|
|
|
EXPECT_LE(0, solution); |
|
EXPECT_LE(solution, 3); |
|
EXPECT_LE(norm(Rs[solution]-Mat(R)), 1e-8); |
|
EXPECT_LE(norm(ts[solution]-Mat(t)), 1e-8); |
|
} |