Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

265 lines
9.5 KiB

#include "precomp.hpp"
using namespace cv;
using namespace std;
namespace cv
{
namespace cnn_3dobj
{
icoSphere::icoSphere(float radius_in, int depth_in)
{
X = 0.5f;
Z = 0.5f;
float vdata[12][3] = { { -X, 0.0f, Z }, { X, 0.0f, Z },
{ -X, 0.0f, -Z }, { X, 0.0f, -Z }, { 0.0f, Z, X }, { 0.0f, Z, -X },
{ 0.0f, -Z, X }, { 0.0f, -Z, -X }, { Z, X, 0.0f }, { -Z, X, 0.0f },
{ Z, -X, 0.0f }, { -Z, -X, 0.0f } };
int tindices[20][3] = { { 0, 4, 1 }, { 0, 9, 4 }, { 9, 5, 4 },
{ 4, 5, 8 }, { 4, 8, 1 }, { 8, 10, 1 }, { 8, 3, 10 }, { 5, 3, 8 },
{ 5, 2, 3 }, { 2, 7, 3 }, { 7, 10, 3 }, { 7, 6, 10 }, { 7, 11, 6 },
{ 11, 0, 6 }, { 0, 1, 6 }, { 6, 1, 10 }, { 9, 0, 11 },
{ 9, 11, 2 }, { 9, 2, 5 }, { 7, 2, 11 } };
diff = 0.00000001;
X *= (int)radius_in;
Z *= (int)radius_in;
// Iterate over points
for (int i = 0; i < 20; ++i)
{
subdivide(vdata[tindices[i][0]], vdata[tindices[i][1]],
vdata[tindices[i][2]], depth_in);
}
CameraPos_temp.push_back(CameraPos[0]);
for (unsigned int j = 1; j < CameraPos.size(); ++j)
{
for (unsigned int k = 0; k < j; ++k)
{
float dist_x, dist_y, dist_z;
dist_x = (CameraPos.at(k).x-CameraPos.at(j).x) * (CameraPos.at(k).x-CameraPos.at(j).x);
dist_y = (CameraPos.at(k).y-CameraPos.at(j).y) * (CameraPos.at(k).y-CameraPos.at(j).y);
dist_z = (CameraPos.at(k).z-CameraPos.at(j).z) * (CameraPos.at(k).z-CameraPos.at(j).z);
if (dist_x < diff && dist_y < diff && dist_z < diff)
break;
else if (k == j-1)
CameraPos_temp.push_back(CameraPos[j]);
}
}
CameraPos = CameraPos_temp;
cout << "View points in total: " << CameraPos.size() << endl;
cout << "The coordinate of view point: " << endl;
for(unsigned int i = 0; i < CameraPos.size(); i++)
{
cout << CameraPos.at(i).x <<' '<< CameraPos.at(i).y << ' ' << CameraPos.at(i).z << endl;
}
};
void icoSphere::norm(float v[])
{
float len = 0;
for (int i = 0; i < 3; ++i)
{
len += v[i] * v[i];
}
len = sqrt(len);
for (int i = 0; i < 3; ++i)
{
v[i] /= ((float)len);
}
};
void icoSphere::add(float v[])
{
Point3f temp_Campos;
std::vector<float>* temp = new std::vector<float>;
for (int k = 0; k < 3; ++k)
{
temp->push_back(v[k]);
}
temp_Campos.x = temp->at(0);temp_Campos.y = temp->at(1);temp_Campos.z = temp->at(2);
CameraPos.push_back(temp_Campos);
};
void icoSphere::subdivide(float v1[], float v2[], float v3[], int depth)
{
norm(v1);
norm(v2);
norm(v3);
if (depth == 0)
{
add(v1);
add(v2);
add(v3);
return;
}
float* v12 = new float[3];
float* v23 = new float[3];
float* v31 = new float[3];
for (int i = 0; i < 3; ++i)
{
v12[i] = (v1[i] + v2[i]) / 2;
v23[i] = (v2[i] + v3[i]) / 2;
v31[i] = (v3[i] + v1[i]) / 2;
}
norm(v12);
norm(v23);
norm(v31);
subdivide(v1, v12, v31, depth - 1);
subdivide(v2, v23, v12, depth - 1);
subdivide(v3, v31, v23, depth - 1);
subdivide(v12, v23, v31, depth - 1);
};
int icoSphere::swapEndian(int val)
{
val = ((val << 8) & 0xFF00FF00) | ((val >> 8) & 0xFF00FF);
return (val << 16) | (val >> 16);
};
cv::Point3d icoSphere::getCenter(cv::Mat cloud)
{
Point3f* data = cloud.ptr<cv::Point3f>();
Point3d dataout;
for(int i = 0; i < cloud.cols; ++i)
{
dataout.x += data[i].x;
dataout.y += data[i].y;
dataout.z += data[i].z;
}
dataout.x = dataout.x/cloud.cols;
dataout.y = dataout.y/cloud.cols;
dataout.z = dataout.z/cloud.cols;
return dataout;
};
float icoSphere::getRadius(cv::Mat cloud, cv::Point3d center)
{
float radiusCam = 0;
Point3f* data = cloud.ptr<cv::Point3f>();
Point3d datatemp;
for(int i = 0; i < cloud.cols; ++i)
{
datatemp.x = data[i].x - (float)center.x;
datatemp.y = data[i].y - (float)center.y;
datatemp.z = data[i].z - (float)center.z;
float Radius = sqrt(pow(datatemp.x,2)+pow(datatemp.y,2)+pow(datatemp.z,2));
if(Radius > radiusCam)
{
radiusCam = Radius;
}
}
return radiusCam;
};
void icoSphere::createHeader(int num_item, int rows, int cols, const char* headerPath)
{
char* a0 = (char*)malloc(1024);
strcpy(a0, headerPath);
char a1[] = "image";
char a2[] = "label";
char* headerPathimg = (char*)malloc(1024);
strcpy(headerPathimg, a0);
strcat(headerPathimg, a1);
char* headerPathlab = (char*)malloc(1024);
strcpy(headerPathlab, a0);
strcat(headerPathlab, a2);
std::ofstream headerImg(headerPathimg, ios::out|ios::binary);
std::ofstream headerLabel(headerPathlab, ios::out|ios::binary);
int headerimg[4] = {2051,num_item,rows,cols};
for (int i=0; i<4; i++)
headerimg[i] = swapEndian(headerimg[i]);
int headerlabel[2] = {2050,num_item};
for (int i=0; i<2; i++)
headerlabel[i] = swapEndian(headerlabel[i]);
headerImg.write(reinterpret_cast<const char*>(headerimg), sizeof(int)*4);
headerImg.close();
headerLabel.write(reinterpret_cast<const char*>(headerlabel), sizeof(int)*2);
headerLabel.close();
};
void icoSphere::writeBinaryfile(String filenameImg, const char* binaryPath, const char* headerPath, int num_item, int label_class, int x, int y, int z, int isrgb)
{
cv::Mat ImgforBin = cv::imread(filenameImg, isrgb);
char* A0 = (char*)malloc(1024);
strcpy(A0, binaryPath);
char A1[] = "image";
char A2[] = "label";
char* binPathimg = (char*)malloc(1024);
strcpy(binPathimg, A0);
strcat(binPathimg, A1);
char* binPathlab = (char*)malloc(1024);
strcpy(binPathlab, A0);
strcat(binPathlab, A2);
fstream img_file, lab_file;
img_file.open(binPathimg,ios::in);
lab_file.open(binPathlab,ios::in);
if(!img_file)
{
cout << "Creating the training data at: " << binaryPath << ". " << endl;
char* a0 = (char*)malloc(1024);
strcpy(a0, headerPath);
char a1[] = "image";
char a2[] = "label";
char* headerPathimg = (char*)malloc(1024);
strcpy(headerPathimg, a0);
strcat(headerPathimg,a1);
char* headerPathlab = (char*)malloc(1024);
strcpy(headerPathlab, a0);
strcat(headerPathlab,a2);
createHeader(num_item, 64, 64, binaryPath);
img_file.open(binPathimg,ios::out|ios::binary|ios::app);
lab_file.open(binPathlab,ios::out|ios::binary|ios::app);
if (isrgb == 0)
{
for (int r = 0; r < ImgforBin.rows; r++)
{
img_file.write(reinterpret_cast<const char*>(ImgforBin.ptr(r)), ImgforBin.cols*ImgforBin.elemSize());
}
}
else
{
std::vector<cv::Mat> Img3forBin;
cv::split(ImgforBin,Img3forBin);
for (unsigned int i = 0; i < Img3forBin.size(); i++)
{
for (int r = 0; r < Img3forBin[i].rows; r++)
{
img_file.write(reinterpret_cast<const char*>(Img3forBin[i].ptr(r)), Img3forBin[i].cols*Img3forBin[i].elemSize());
}
}
}
signed char templab = (signed char)label_class;
lab_file << templab << (signed char)x << (signed char)y << (signed char)z;
}
else
{
img_file.close();
lab_file.close();
img_file.open(binPathimg,ios::out|ios::binary|ios::app);
lab_file.open(binPathlab,ios::out|ios::binary|ios::app);
cout <<"Concatenating the training data at: " << binaryPath << ". " << endl;
if (isrgb == 0)
{
for (int r = 0; r < ImgforBin.rows; r++)
{
img_file.write(reinterpret_cast<const char*>(ImgforBin.ptr(r)), ImgforBin.cols*ImgforBin.elemSize());
}
}
else
{
std::vector<cv::Mat> Img3forBin;
cv::split(ImgforBin,Img3forBin);
for (unsigned int i = 0; i < Img3forBin.size(); i++)
{
for (int r = 0; r < Img3forBin[i].rows; r++)
{
img_file.write(reinterpret_cast<const char*>(Img3forBin[i].ptr(r)), Img3forBin[i].cols*Img3forBin[i].elemSize());
}
}
}
signed char templab = (signed char)label_class;
lab_file << templab << (signed char)x << (signed char)y << (signed char)z;
}
img_file.close();
lab_file.close();
};
} /* namespace cnn_3dobj */
} /* namespace cv */