You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
4.9 KiB
162 lines
4.9 KiB
#include "stump.hpp" |
|
|
|
namespace cv |
|
{ |
|
namespace adas |
|
{ |
|
|
|
/* Cumulative sum by rows */ |
|
static void cumsum(const Mat_<float>& src, Mat_<float> dst) |
|
{ |
|
CV_Assert(src.cols > 0); |
|
|
|
for( int row = 0; row < src.rows; ++row ) |
|
{ |
|
dst(row, 0) = src(row, 0); |
|
for( int col = 1; col < src.cols; ++col ) |
|
{ |
|
dst(row, col) = dst(row, col - 1) + src(row, col); |
|
} |
|
} |
|
} |
|
|
|
int Stump::train(const Mat& data, const Mat& labels, const Mat& weights) |
|
{ |
|
CV_Assert(labels.rows == 1 && labels.cols == data.cols); |
|
CV_Assert(weights.rows == 1 && weights.cols == data.cols); |
|
/* Assert that data and labels have int type */ |
|
/* Assert that weights have float type */ |
|
|
|
|
|
/* Prepare labels for each feature rearranged according to sorted order */ |
|
Mat sorted_labels(data.rows, data.cols, labels.type()); |
|
Mat sorted_weights(data.rows, data.cols, weights.type()); |
|
Mat indices; |
|
sortIdx(data, indices, cv::SORT_EVERY_ROW | cv::SORT_ASCENDING); |
|
for( int row = 0; row < indices.rows; ++row ) |
|
{ |
|
for( int col = 0; col < indices.cols; ++col ) |
|
{ |
|
sorted_labels.at<int>(row, col) = |
|
labels.at<int>(0, indices.at<int>(row, col)); |
|
sorted_weights.at<float>(row, col) = |
|
weights.at<float>(0, indices.at<float>(row, col)); |
|
} |
|
} |
|
|
|
/* Sort feature values */ |
|
Mat sorted_data(data.rows, data.cols, data.type()); |
|
sort(data, sorted_data, cv::SORT_EVERY_ROW | cv::SORT_ASCENDING); |
|
|
|
/* Split positive and negative weights */ |
|
Mat pos_weights = Mat::zeros(sorted_weights.rows, sorted_weights.cols, |
|
sorted_weights.type()); |
|
Mat neg_weights = Mat::zeros(sorted_weights.rows, sorted_weights.cols, |
|
sorted_weights.type()); |
|
for( int row = 0; row < data.rows; ++row ) |
|
{ |
|
for( int col = 0; col < data.cols; ++col ) |
|
{ |
|
if( sorted_labels.at<int>(row, col) == +1 ) |
|
{ |
|
pos_weights.at<float>(row, col) = |
|
sorted_weights.at<float>(row, col); |
|
} |
|
else |
|
{ |
|
neg_weights.at<float>(row, col) = |
|
sorted_weights.at<float>(row, col); |
|
} |
|
} |
|
} |
|
|
|
/* Compute cumulative sums for fast stump error computation */ |
|
Mat pos_cum_weights = Mat::zeros(sorted_weights.rows, sorted_weights.cols, |
|
sorted_weights.type()); |
|
Mat neg_cum_weights = Mat::zeros(sorted_weights.rows, sorted_weights.cols, |
|
sorted_weights.type()); |
|
cumsum(pos_weights, pos_cum_weights); |
|
cumsum(neg_weights, neg_cum_weights); |
|
|
|
/* Compute total weights of positive and negative samples */ |
|
float pos_total_weight = pos_cum_weights.at<float>(0, weights.cols - 1); |
|
float neg_total_weight = neg_cum_weights.at<float>(0, weights.cols - 1); |
|
|
|
|
|
float eps = 1. / 4 * labels.cols; |
|
|
|
/* Compute minimal error */ |
|
float min_err = FLT_MAX; |
|
int min_row = -1; |
|
int min_col = -1; |
|
int min_polarity = 0; |
|
float min_pos_value = 1, min_neg_value = -1; |
|
|
|
for( int row = 0; row < sorted_weights.rows; ++row ) |
|
{ |
|
for( int col = 0; col < sorted_weights.cols - 1; ++col ) |
|
{ |
|
float err, h_pos, h_neg; |
|
|
|
// Direct polarity |
|
|
|
float pos_wrong = pos_cum_weights.at<float>(row, col); |
|
float pos_right = pos_total_weight - pos_wrong; |
|
|
|
float neg_right = neg_cum_weights.at<float>(row, col); |
|
float neg_wrong = neg_total_weight - neg_right; |
|
|
|
h_pos = .5 * log((pos_right + eps) / (pos_wrong + eps)); |
|
h_neg = .5 * log((neg_wrong + eps) / (neg_right + eps)); |
|
|
|
err = sqrt(pos_right * neg_wrong) + sqrt(pos_wrong * neg_right); |
|
|
|
if( err < min_err ) |
|
{ |
|
min_err = err; |
|
min_row = row; |
|
min_col = col; |
|
min_polarity = +1; |
|
min_pos_value = h_pos; |
|
min_neg_value = h_neg; |
|
} |
|
|
|
// Opposite polarity |
|
swap(pos_right, pos_wrong); |
|
swap(neg_right, neg_wrong); |
|
|
|
h_pos = -h_pos; |
|
h_neg = -h_neg; |
|
|
|
err = sqrt(pos_right * neg_wrong) + sqrt(pos_wrong * neg_right); |
|
|
|
|
|
if( err < min_err ) |
|
{ |
|
min_err = err; |
|
min_row = row; |
|
min_col = col; |
|
min_polarity = -1; |
|
min_pos_value = h_pos; |
|
min_neg_value = h_neg; |
|
} |
|
} |
|
} |
|
|
|
/* Compute threshold, store found values in fields */ |
|
threshold_ = ( sorted_data.at<int>(min_row, min_col) + |
|
sorted_data.at<int>(min_row, min_col + 1) ) / 2; |
|
polarity_ = min_polarity; |
|
pos_value_ = min_pos_value; |
|
neg_value_ = min_neg_value; |
|
|
|
return min_row; |
|
} |
|
|
|
float Stump::predict(int value) |
|
{ |
|
return polarity_ * (value - threshold_) > 0 ? pos_value_ : neg_value_; |
|
} |
|
|
|
} /* namespace adas */ |
|
} /* namespace cv */
|
|
|