You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
154 lines
4.7 KiB
154 lines
4.7 KiB
/* |
|
By downloading, copying, installing or using the software you agree to this |
|
license. If you do not agree to this license, do not download, install, |
|
copy or use the software. |
|
License Agreement |
|
For Open Source Computer Vision Library |
|
(3-clause BSD License) |
|
Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
Third party copyrights are property of their respective owners. |
|
Redistribution and use in source and binary forms, with or without modification, |
|
are permitted provided that the following conditions are met: |
|
* Redistributions of source code must retain the above copyright notice, |
|
this list of conditions and the following disclaimer. |
|
* Redistributions in binary form must reproduce the above copyright notice, |
|
this list of conditions and the following disclaimer in the documentation |
|
and/or other materials provided with the distribution. |
|
* Neither the names of the copyright holders nor the names of the contributors |
|
may be used to endorse or promote products derived from this software |
|
without specific prior written permission. |
|
This software is provided by the copyright holders and contributors "as is" and |
|
any express or implied warranties, including, but not limited to, the implied |
|
warranties of merchantability and fitness for a particular purpose are |
|
disclaimed. In no event shall copyright holders or contributors be liable for |
|
any direct, indirect, incidental, special, exemplary, or consequential damages |
|
(including, but not limited to, procurement of substitute goods or services; |
|
loss of use, data, or profits; or business interruption) however caused |
|
and on any theory of liability, whether in contract, strict liability, |
|
or tort (including negligence or otherwise) arising in any way out of |
|
the use of this software, even if advised of the possibility of such damage. |
|
*/ |
|
|
|
|
|
#include "opencv2/ximgproc/segmentation.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/core.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include <iostream> |
|
|
|
using namespace cv; |
|
using namespace cv::ximgproc::segmentation; |
|
|
|
Scalar hsv_to_rgb(Scalar); |
|
Scalar color_mapping(int); |
|
|
|
static void help() { |
|
std::cout << std::endl << |
|
"A program demonstrating the use and capabilities of a particular graph based image" << std::endl << |
|
"segmentation algorithm described in P. Felzenszwalb, D. Huttenlocher," << std::endl << |
|
" \"Efficient Graph-Based Image Segmentation\"" << std::endl << |
|
"International Journal of Computer Vision, Vol. 59, No. 2, September 2004" << std::endl << std::endl << |
|
"Usage:" << std::endl << |
|
"./graphsegmentation_demo input_image output_image [simga=0.5] [k=300] [min_size=100]" << std::endl; |
|
} |
|
|
|
Scalar hsv_to_rgb(Scalar c) { |
|
Mat in(1, 1, CV_32FC3); |
|
Mat out(1, 1, CV_32FC3); |
|
|
|
float * p = in.ptr<float>(0); |
|
|
|
p[0] = (float)c[0] * 360.0f; |
|
p[1] = (float)c[1]; |
|
p[2] = (float)c[2]; |
|
|
|
cvtColor(in, out, COLOR_HSV2RGB); |
|
|
|
Scalar t; |
|
|
|
Vec3f p2 = out.at<Vec3f>(0, 0); |
|
|
|
t[0] = (int)(p2[0] * 255); |
|
t[1] = (int)(p2[1] * 255); |
|
t[2] = (int)(p2[2] * 255); |
|
|
|
return t; |
|
|
|
} |
|
|
|
Scalar color_mapping(int segment_id) { |
|
|
|
double base = (double)(segment_id) * 0.618033988749895 + 0.24443434; |
|
|
|
return hsv_to_rgb(Scalar(fmod(base, 1.2), 0.95, 0.80)); |
|
|
|
} |
|
|
|
int main(int argc, char** argv) { |
|
|
|
if (argc < 2 || argc > 6) { |
|
help(); |
|
return -1; |
|
} |
|
|
|
setUseOptimized(true); |
|
setNumThreads(8); |
|
|
|
Ptr<GraphSegmentation> gs = createGraphSegmentation(); |
|
|
|
if (argc > 3) |
|
gs->setSigma(atof(argv[3])); |
|
|
|
if (argc > 4) |
|
gs->setK((float)atoi(argv[4])); |
|
|
|
if (argc > 5) |
|
gs->setMinSize(atoi(argv[5])); |
|
|
|
if (!gs) { |
|
std::cerr << "Failed to create GraphSegmentation Algorithm." << std::endl; |
|
return -2; |
|
} |
|
|
|
Mat input, output, output_image; |
|
|
|
input = imread(argv[1]); |
|
|
|
if (!input.data) { |
|
std::cerr << "Failed to load input image" << std::endl; |
|
return -3; |
|
} |
|
|
|
gs->processImage(input, output); |
|
|
|
double min, max; |
|
minMaxLoc(output, &min, &max); |
|
|
|
int nb_segs = (int)max + 1; |
|
|
|
std::cout << nb_segs << " segments" << std::endl; |
|
|
|
output_image = Mat::zeros(output.rows, output.cols, CV_8UC3); |
|
|
|
uint* p; |
|
uchar* p2; |
|
|
|
for (int i = 0; i < output.rows; i++) { |
|
|
|
p = output.ptr<uint>(i); |
|
p2 = output_image.ptr<uchar>(i); |
|
|
|
for (int j = 0; j < output.cols; j++) { |
|
Scalar color = color_mapping(p[j]); |
|
p2[j*3] = (uchar)color[0]; |
|
p2[j*3 + 1] = (uchar)color[1]; |
|
p2[j*3 + 2] = (uchar)color[2]; |
|
} |
|
} |
|
|
|
imwrite(argv[2], output_image); |
|
|
|
std::cout << "Image written to " << argv[2] << std::endl; |
|
|
|
return 0; |
|
}
|
|
|