You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
91 lines
3.4 KiB
91 lines
3.4 KiB
#include <iostream> |
|
|
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/ximgproc.hpp" |
|
#include "opencv2/imgcodecs.hpp" |
|
#include "opencv2/highgui.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::ximgproc; |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
std::string in; |
|
cv::CommandLineParser parser(argc, argv, "{@input|../samples/data/corridor.jpg|input image}{help h||show help message}"); |
|
if (parser.has("help")) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
in = parser.get<string>("@input"); |
|
|
|
Mat image = imread(in, IMREAD_GRAYSCALE); |
|
|
|
if( image.empty() ) |
|
{ |
|
return -1; |
|
} |
|
|
|
// Create LSD detector |
|
Ptr<LineSegmentDetector> lsd = createLineSegmentDetector(); |
|
vector<Vec4f> lines_lsd; |
|
|
|
// Create FLD detector |
|
// Param Default value Description |
|
// length_threshold 10 - Segments shorter than this will be discarded |
|
// distance_threshold 1.41421356 - A point placed from a hypothesis line |
|
// segment farther than this will be |
|
// regarded as an outlier |
|
// canny_th1 50 - First threshold for |
|
// hysteresis procedure in Canny() |
|
// canny_th2 50 - Second threshold for |
|
// hysteresis procedure in Canny() |
|
// canny_aperture_size 3 - Aperturesize for the sobel |
|
// operator in Canny() |
|
// do_merge false - If true, incremental merging of segments |
|
// will be perfomred |
|
int length_threshold = 10; |
|
float distance_threshold = 1.41421356f; |
|
double canny_th1 = 50.0; |
|
double canny_th2 = 50.0; |
|
int canny_aperture_size = 3; |
|
bool do_merge = false; |
|
Ptr<FastLineDetector> fld = createFastLineDetector(length_threshold, |
|
distance_threshold, canny_th1, canny_th2, canny_aperture_size, |
|
do_merge); |
|
vector<Vec4f> lines_fld; |
|
|
|
// Because of some CPU's power strategy, it seems that the first running of |
|
// an algorithm takes much longer. So here we run both of the algorithmes 10 |
|
// times to see each algorithm's processing time with sufficiently warmed-up |
|
// CPU performance. |
|
for(int run_count = 0; run_count < 10; run_count++) { |
|
lines_lsd.clear(); |
|
int64 start_lsd = getTickCount(); |
|
lsd->detect(image, lines_lsd); |
|
// Detect the lines with LSD |
|
double freq = getTickFrequency(); |
|
double duration_ms_lsd = double(getTickCount() - start_lsd) * 1000 / freq; |
|
std::cout << "Elapsed time for LSD: " << duration_ms_lsd << " ms." << std::endl; |
|
|
|
lines_fld.clear(); |
|
int64 start = getTickCount(); |
|
// Detect the lines with FLD |
|
fld->detect(image, lines_fld); |
|
double duration_ms = double(getTickCount() - start) * 1000 / freq; |
|
std::cout << "Ealpsed time for FLD " << duration_ms << " ms." << std::endl; |
|
} |
|
// Show found lines with LSD |
|
Mat line_image_lsd(image); |
|
lsd->drawSegments(line_image_lsd, lines_lsd); |
|
imshow("LSD result", line_image_lsd); |
|
|
|
// Show found lines with FLD |
|
Mat line_image_fld(image); |
|
fld->drawSegments(line_image_fld, lines_fld); |
|
imshow("FLD result", line_image_fld); |
|
|
|
waitKey(); |
|
return 0; |
|
}
|
|
|