You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
241 lines
8.9 KiB
241 lines
8.9 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include <limits.h> |
|
|
|
using namespace cv; |
|
using namespace cv::stereo; |
|
using namespace std; |
|
|
|
class CV_BlockMatchingTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_BlockMatchingTest(); |
|
~CV_BlockMatchingTest(); |
|
protected: |
|
void run(int /* idx */); |
|
}; |
|
|
|
CV_BlockMatchingTest::CV_BlockMatchingTest(){} |
|
CV_BlockMatchingTest::~CV_BlockMatchingTest(){} |
|
|
|
static double errorLevel(const Mat &ideal, Mat &actual) |
|
{ |
|
uint8_t *date, *harta; |
|
harta = actual.data; |
|
date = ideal.data; |
|
int stride, h; |
|
stride = (int)ideal.step; |
|
h = ideal.rows; |
|
int error = 0; |
|
for (int i = 0; i < ideal.rows; i++) |
|
{ |
|
for (int j = 0; j < ideal.cols; j++) |
|
{ |
|
if (date[i * stride + j] != 0) |
|
if (abs(date[i * stride + j] - harta[i * stride + j]) > 2 * 16) |
|
{ |
|
error += 1; |
|
} |
|
} |
|
} |
|
return ((double)((error * 100) * 1.0) / (stride * h)); |
|
} |
|
void CV_BlockMatchingTest::run(int ) |
|
{ |
|
Mat image1, image2, gt; |
|
//some test images can be found in the test data folder |
|
//in order for the tests to build succesfully please replace |
|
//ts->get_data_path() + "testdata/imL2l.bmp with the path from your disk |
|
//for example if your images are on D:\\ , please write D:\\testdata\\imL2l.bmp |
|
image1 = imread(ts->get_data_path() + "testdata/imL2l.bmp", CV_8UC1); |
|
image2 = imread(ts->get_data_path() + "testdata/imL2.bmp", CV_8UC1); |
|
gt = imread(ts->get_data_path() + "testdata/groundtruth.bmp", CV_8UC1); |
|
|
|
if(image1.empty() || image2.empty() || gt.empty()) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Wrong input data \n"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
return; |
|
} |
|
if(image1.rows != image2.rows || image1.cols != image2.cols || gt.cols != gt.cols || gt.rows != gt.rows) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
return; |
|
} |
|
|
|
RNG range; |
|
//set the parameters |
|
int binary_descriptor_type = range.uniform(0,8); |
|
int kernel_size, aggregation_window; |
|
if(binary_descriptor_type == 0) |
|
kernel_size = 5; |
|
else if(binary_descriptor_type == 2 || binary_descriptor_type == 3) |
|
kernel_size = 7; |
|
else if(binary_descriptor_type == 1) |
|
kernel_size = 11; |
|
else |
|
kernel_size = 9; |
|
if(binary_descriptor_type == 3) |
|
aggregation_window = 13; |
|
else |
|
aggregation_window = 11; |
|
Mat test = Mat(image1.rows, image1.cols, CV_8UC1); |
|
Ptr<StereoBinaryBM> sbm = StereoBinaryBM::create(16, kernel_size); |
|
//we set the corresponding parameters |
|
sbm->setPreFilterCap(31); |
|
sbm->setMinDisparity(0); |
|
sbm->setTextureThreshold(10); |
|
sbm->setUniquenessRatio(0); |
|
sbm->setSpeckleWindowSize(400);//speckle size |
|
sbm->setSpeckleRange(200); |
|
sbm->setDisp12MaxDiff(0); |
|
sbm->setScalleFactor(16);//the scaling factor |
|
sbm->setBinaryKernelType(binary_descriptor_type);//binary descriptor kernel |
|
sbm->setAgregationWindowSize(aggregation_window); |
|
//speckle removal algorithm the user can choose between the average speckle removal algorithm |
|
//or the classical version that was implemented in open cv |
|
sbm->setSpekleRemovalTechnique(CV_SPECKLE_REMOVAL_AVG_ALGORITHM); |
|
sbm->setUsePrefilter(false);//pre-filter or not the images prior to making the transformations |
|
//-- calculate the disparity image |
|
sbm->compute(image1, image2, test); |
|
if(test.empty()) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
if(errorLevel(gt,test) > 20) |
|
{ |
|
ts->printf( cvtest::TS::LOG, |
|
"Too big error\n"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
return; |
|
} |
|
} |
|
|
|
class CV_SGBlockMatchingTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_SGBlockMatchingTest(); |
|
~CV_SGBlockMatchingTest(); |
|
protected: |
|
void run(int /* idx */); |
|
}; |
|
|
|
CV_SGBlockMatchingTest::CV_SGBlockMatchingTest(){} |
|
CV_SGBlockMatchingTest::~CV_SGBlockMatchingTest(){} |
|
|
|
void CV_SGBlockMatchingTest::run(int ) |
|
{ |
|
Mat image1, image2, gt; |
|
//some test images can be found in the test data folder |
|
image1 = imread(ts->get_data_path() + "testdata/imL2l.bmp", CV_8UC1); |
|
image2 = imread(ts->get_data_path() + "testdata/imL2.bmp", CV_8UC1); |
|
gt = imread(ts->get_data_path() + "testdata/groundtruth.bmp", CV_8UC1); |
|
|
|
|
|
if(image1.empty() || image2.empty() || gt.empty()) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Wrong input data \n"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
return; |
|
} |
|
if(image1.rows != image2.rows || image1.cols != image2.cols || gt.cols != gt.cols || gt.rows != gt.rows) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
return; |
|
} |
|
|
|
RNG range; |
|
//set the parameters |
|
int binary_descriptor_type = range.uniform(0,8); |
|
int kernel_size; |
|
if(binary_descriptor_type == 0) |
|
kernel_size = 5; |
|
else if(binary_descriptor_type == 2 || binary_descriptor_type == 3) |
|
kernel_size = 7; |
|
else if(binary_descriptor_type == 1) |
|
kernel_size = 11; |
|
else |
|
kernel_size = 9; |
|
|
|
Mat test = Mat(image1.rows, image1.cols, CV_8UC1); |
|
Mat imgDisparity16S2 = Mat(image1.rows, image1.cols, CV_16S); |
|
Ptr<StereoBinarySGBM> sgbm = StereoBinarySGBM::create(0, 16, kernel_size); |
|
//setting the penalties for sgbm |
|
sgbm->setP1(10); |
|
sgbm->setP2(100); |
|
sgbm->setMinDisparity(0); |
|
sgbm->setNumDisparities(16);//set disparity number |
|
sgbm->setUniquenessRatio(1); |
|
sgbm->setSpeckleWindowSize(400); |
|
sgbm->setSpeckleRange(200); |
|
sgbm->setDisp12MaxDiff(1); |
|
sgbm->setBinaryKernelType(binary_descriptor_type);//set the binary descriptor |
|
sgbm->setSpekleRemovalTechnique(CV_SPECKLE_REMOVAL_AVG_ALGORITHM); //the avg speckle removal algorithm |
|
sgbm->setSubPixelInterpolationMethod(CV_SIMETRICV_INTERPOLATION);// the SIMETRIC V interpolation method |
|
sgbm->compute(image1, image2, imgDisparity16S2); |
|
double minVal; double maxVal; |
|
minMaxLoc(imgDisparity16S2, &minVal, &maxVal); |
|
|
|
imgDisparity16S2.convertTo(test, CV_8UC1, 255 / (maxVal - minVal)); |
|
|
|
if(test.empty()) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
double error = errorLevel(gt,test); |
|
if(error > 10) |
|
{ |
|
ts->printf( cvtest::TS::LOG, |
|
"Too big error\n"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
return; |
|
} |
|
} |
|
TEST(block_matching_simple_test, accuracy) { CV_BlockMatchingTest test; test.safe_run(); } |
|
TEST(SG_block_matching_simple_test, accuracy) { CV_SGBlockMatchingTest test; test.safe_run(); }
|
|
|