Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

463 lines
13 KiB

/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2012, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "test_precomp.hpp"
#include <opencv2/rgbd.hpp>
namespace cv
{
namespace rgbd
{
class CV_EXPORTS TickMeter
{
public:
TickMeter();
void start();
void stop();
int64 getTimeTicks() const;
double getTimeMicro() const;
double getTimeMilli() const;
double getTimeSec() const;
int64 getCounter() const;
void reset();
private:
int64 counter;
int64 sumTime;
int64 startTime;
};
TickMeter::TickMeter() { reset(); }
int64 TickMeter::getTimeTicks() const { return sumTime; }
double TickMeter::getTimeSec() const { return (double)getTimeTicks()/getTickFrequency(); }
double TickMeter::getTimeMilli() const { return getTimeSec()*1e3; }
double TickMeter::getTimeMicro() const { return getTimeMilli()*1e3; }
int64 TickMeter::getCounter() const { return counter; }
void TickMeter::reset() {startTime = 0; sumTime = 0; counter = 0; }
void TickMeter::start(){ startTime = getTickCount(); }
void TickMeter::stop()
{
int64 time = getTickCount();
if ( startTime == 0 )
return;
++counter;
sumTime += ( time - startTime );
startTime = 0;
}
Point3f
rayPlaneIntersection(Point2f uv, const Mat& centroid, const Mat& normal, const Mat_<float>& Kinv);
Vec3f
rayPlaneIntersection(const Vec3d& uv1, double centroid_dot_normal, const Vec3d& normal,
const Matx33d& Kinv);
Vec3f
rayPlaneIntersection(const Vec3d& uv1, double centroid_dot_normal, const Vec3d& normal, const Matx33d& Kinv)
{
Matx31d L = Kinv * uv1; //a ray passing through camera optical center
//and uv.
L = L * (1.0 / norm(L));
double LdotNormal = L.dot(normal);
double d;
if (std::fabs(LdotNormal) > 1e-9)
{
d = centroid_dot_normal / LdotNormal;
}
else
{
d = 1.0;
std::cout << "warning, LdotNormal nearly 0! " << LdotNormal << std::endl;
std::cout << "contents of L, Normal: " << Mat(L) << ", " << Mat(normal) << std::endl;
}
Vec3f xyz((float)(d * L(0)), (float)(d * L(1)), (float)(d * L(2)));
return xyz;
}
Point3f
rayPlaneIntersection(Point2f uv, const Mat& centroid, const Mat& normal, const Mat_<float>& Kinv)
{
Matx33d dKinv(Kinv);
Vec3d dNormal(normal);
return rayPlaneIntersection(Vec3d(uv.x, uv.y, 1), centroid.dot(normal), dNormal, dKinv);
}
const int W = 640;
const int H = 480;
int window_size = 5;
float focal_length = 525;
float cx = W / 2.f + 0.5f;
float cy = H / 2.f + 0.5f;
Mat K = (Mat_<double>(3, 3) << focal_length, 0, cx, 0, focal_length, cy, 0, 0, 1);
Mat Kinv = K.inv();
static RNG rng;
struct Plane
{
Vec3d n, p;
double p_dot_n;
Plane()
{
n[0] = rng.uniform(-0.5, 0.5);
n[1] = rng.uniform(-0.5, 0.5);
n[2] = -0.3; //rng.uniform(-1.f, 0.5f);
n = n / norm(n);
set_d((float)rng.uniform(-2.0, 0.6));
}
void
set_d(float d)
{
p = Vec3d(0, 0, d / n[2]);
p_dot_n = p.dot(n);
}
Vec3f
intersection(float u, float v, const Matx33f& Kinv_in) const
{
return rayPlaneIntersection(Vec3d(u, v, 1), p_dot_n, n, Kinv_in);
}
};
void
gen_points_3d(std::vector<Plane>& planes_out, Mat_<unsigned char> &plane_mask, Mat& points3d, Mat& normals,
int n_planes);
void
gen_points_3d(std::vector<Plane>& planes_out, Mat_<unsigned char> &plane_mask, Mat& points3d, Mat& normals,
int n_planes)
{
std::vector<Plane> planes;
for (int i = 0; i < n_planes; i++)
{
Plane px;
for (int j = 0; j < 1; j++)
{
px.set_d(rng.uniform(-3.f, -0.5f));
planes.push_back(px);
}
}
Mat_ < Vec3f > outp(H, W);
Mat_ < Vec3f > outn(H, W);
plane_mask.create(H, W);
// n ( r - r_0) = 0
// n * r_0 = d
//
// r_0 = (0,0,0)
// r[0]
for (int v = 0; v < H; v++)
{
for (int u = 0; u < W; u++)
{
unsigned int plane_index = (unsigned int)((u / float(W)) * planes.size());
Plane plane = planes[plane_index];
outp(v, u) = plane.intersection((float)u, (float)v, Kinv);
outn(v, u) = plane.n;
plane_mask(v, u) = (uchar)plane_index;
}
}
planes_out = planes;
points3d = outp;
normals = outn;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
class CV_RgbdNormalsTest: public cvtest::BaseTest
{
public:
CV_RgbdNormalsTest()
{
}
~CV_RgbdNormalsTest()
{
}
protected:
void
run(int)
{
try
{
Mat_<unsigned char> plane_mask;
for (unsigned char i = 0; i < 3; ++i)
{
RgbdNormals::RGBD_NORMALS_METHOD method;
// inner vector: whether it's 1 plane or 3 planes
// outer vector: float or double
std::vector<std::vector<float> > errors(2);
errors[0].resize(2);
errors[1].resize(2);
switch (i)
{
case 0:
method = RgbdNormals::RGBD_NORMALS_METHOD_FALS;
std::cout << std::endl << "*** FALS" << std::endl;
errors[0][0] = 0.006f;
errors[0][1] = 0.03f;
errors[1][0] = 0.00008f;
errors[1][1] = 0.02f;
break;
case 1:
method = RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD;
std::cout << std::endl << "*** LINEMOD" << std::endl;
errors[0][0] = 0.04f;
errors[0][1] = 0.07f;
errors[1][0] = 0.05f;
errors[1][1] = 0.08f;
break;
case 2:
method = RgbdNormals::RGBD_NORMALS_METHOD_SRI;
std::cout << std::endl << "*** SRI" << std::endl;
errors[0][0] = 0.02f;
errors[0][1] = 0.04f;
errors[1][0] = 0.02f;
errors[1][1] = 0.04f;
break;
default:
method = (RgbdNormals::RGBD_NORMALS_METHOD)-1;
CV_Error(0, "");
}
for (unsigned char j = 0; j < 2; ++j)
{
int depth = (j % 2 == 0) ? CV_32F : CV_64F;
if (depth == CV_32F)
std::cout << "* float" << std::endl;
else
std::cout << "* double" << std::endl;
RgbdNormals normals_computer(H, W, depth, K, 5, method);
normals_computer.initialize();
std::vector<Plane> plane_params;
Mat points3d, ground_normals;
// 1 plane, continuous scene, very low error..
std::cout << "1 plane" << std::endl;
float err_mean = 0;
for (int ii = 0; ii < 5; ++ii)
{
gen_points_3d(plane_params, plane_mask, points3d, ground_normals, 1);
err_mean += testit(points3d, ground_normals, normals_computer);
}
std::cout << "mean diff: " << (err_mean / 5) << std::endl;
EXPECT_LE(err_mean/5, errors[j][0])<< " thresh: " << errors[j][0] << std::endl;
// 3 discontinuities, more error expected.
std::cout << "3 planes" << std::endl;
err_mean = 0;
for (int ii = 0; ii < 5; ++ii)
{
gen_points_3d(plane_params, plane_mask, points3d, ground_normals, 3);
err_mean += testit(points3d, ground_normals, normals_computer);
}
std::cout << "mean diff: " << (err_mean / 5) << std::endl;
EXPECT_LE(err_mean/5, errors[j][1])<< "mean diff: " << (err_mean/5) << " thresh: " << errors[j][1] << std::endl;
}
}
//TODO test NaNs in data
} catch (...)
{
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
}
ts->set_failed_test_info(cvtest::TS::OK);
}
float
testit(const Mat & points3d, const Mat & in_ground_normals, const RgbdNormals & normals_computer)
{
TickMeter tm;
tm.start();
Mat in_normals;
if (normals_computer.getMethod() == RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD)
{
std::vector<Mat> channels;
split(points3d, channels);
normals_computer(channels[2], in_normals);
}
else
normals_computer(points3d, in_normals);
tm.stop();
Mat_<Vec3f> normals, ground_normals;
in_normals.convertTo(normals, CV_32FC3);
in_ground_normals.convertTo(ground_normals, CV_32FC3);
float err = 0;
for (int y = 0; y < normals.rows; ++y)
for (int x = 0; x < normals.cols; ++x)
{
Vec3f vec1 = normals(y, x), vec2 = ground_normals(y, x);
vec1 = vec1 / norm(vec1);
vec2 = vec2 / norm(vec2);
float dot = vec1.dot(vec2);
// Just for rounding errors
if (std::abs(dot) < 1)
err += std::min(std::acos(dot), std::acos(-dot));
}
err /= normals.rows * normals.cols;
std::cout << "Average error: " << err << " Speed: " << tm.getTimeMilli() << " ms" << std::endl;
return err;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
class CV_RgbdPlaneTest: public cvtest::BaseTest
{
public:
CV_RgbdPlaneTest()
{
}
~CV_RgbdPlaneTest()
{
}
protected:
void
run(int)
{
try
{
RgbdPlane plane_computer;
std::vector<Plane> planes;
Mat points3d, ground_normals;
Mat_<unsigned char> plane_mask;
gen_points_3d(planes, plane_mask, points3d, ground_normals, 1);
testit(planes, plane_mask, points3d, plane_computer); // 1 plane, continuous scene, very low error..
for (int ii = 0; ii < 10; ii++)
{
gen_points_3d(planes, plane_mask, points3d, ground_normals, 3); //three planes
testit(planes, plane_mask, points3d, plane_computer); // 3 discontinuities, more error expected.
}
} catch (...)
{
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
}
ts->set_failed_test_info(cvtest::TS::OK);
}
void
testit(const std::vector<Plane> & gt_planes, const Mat & gt_plane_mask, const Mat & points3d,
RgbdPlane & plane_computer)
{
for (char i_test = 0; i_test < 2; ++i_test)
{
TickMeter tm1, tm2;
Mat plane_mask;
std::vector<Vec4f> plane_coefficients;
if (i_test == 0)
{
tm1.start();
// First, get the normals
int depth = CV_32F;
RgbdNormals normals_computer(H, W, depth, K, 5, RgbdNormals::RGBD_NORMALS_METHOD_FALS);
Mat normals;
normals_computer(points3d, normals);
tm1.stop();
tm2.start();
plane_computer(points3d, normals, plane_mask, plane_coefficients);
tm2.stop();
}
else
{
tm2.start();
plane_computer(points3d, plane_mask, plane_coefficients);
tm2.stop();
}
// Compare each found plane to each ground truth plane
int n_planes = (int)plane_coefficients.size();
int n_gt_planes = (int)gt_planes.size();
Mat_<int> matching(n_gt_planes, n_planes);
for (int j = 0; j < n_gt_planes; ++j)
{
Mat gt_mask = gt_plane_mask == j;
int n_gt = countNonZero(gt_mask);
int n_max = 0, i_max = 0;
for (int i = 0; i < n_planes; ++i)
{
Mat dst;
bitwise_and(gt_mask, plane_mask == i, dst);
matching(j, i) = countNonZero(dst);
if (matching(j, i) > n_max)
{
n_max = matching(j, i);
i_max = i;
}
}
// Get the best match
ASSERT_LE(float(n_max - n_gt) / n_gt, 0.001);
// Compare the normals
Vec3d normal(plane_coefficients[i_max][0], plane_coefficients[i_max][1], plane_coefficients[i_max][2]);
ASSERT_GE(std::abs(gt_planes[j].n.dot(normal)), 0.95);
}
std::cout << " Speed: ";
if (i_test == 0)
std::cout << "normals " << tm1.getTimeMilli() << " ms and ";
std::cout << "plane " << tm2.getTimeMilli() << " ms " << std::endl;
}
}
};
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(DISABLED_Rgbd_Normals, compute)
{
cv::rgbd::CV_RgbdNormalsTest test;
test.safe_run();
}
TEST(Rgbd_Plane, compute)
{
cv::rgbd::CV_RgbdPlaneTest test;
test.safe_run();
}