You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
396 lines
11 KiB
396 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include <opencv2/core/ocl.hpp> |
|
#include <iostream> |
|
#include "npy_blob.hpp" |
|
#include <opencv2/dnn/all_layers.hpp> |
|
#include <opencv2/ts/ocl_test.hpp> |
|
|
|
namespace cvtest |
|
{ |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
template<typename TString> |
|
static String _tf(TString filename) |
|
{ |
|
return (getOpenCVExtraDir() + "/dnn/layers/") + filename; |
|
} |
|
|
|
|
|
enum RunLayerMode |
|
{ |
|
ALLOC_ONLY = 1, |
|
FORWARD_ONLY = 2, |
|
ALLOC_AND_FORWARD = ALLOC_ONLY | FORWARD_ONLY |
|
}; |
|
|
|
typedef Ptr<std::vector<Blob*> > PtrToVecPtrBlob; |
|
|
|
PtrToVecPtrBlob |
|
runLayer(Ptr<Layer> layer, std::vector<Blob> &inpBlobs, std::vector<Blob> &outBlobs, int mode = ALLOC_AND_FORWARD) |
|
{ |
|
PtrToVecPtrBlob inpPtrs(new std::vector<Blob*>()); |
|
inpPtrs->reserve(inpBlobs.size()); |
|
for (size_t i = 0; i < inpBlobs.size(); i++) |
|
inpPtrs->push_back(&inpBlobs[i]); |
|
|
|
if (mode & ALLOC_ONLY) layer->allocate(*inpPtrs, outBlobs); |
|
if (mode & FORWARD_ONLY) layer->forward(*inpPtrs, outBlobs); |
|
|
|
return inpPtrs; |
|
} |
|
|
|
|
|
void testLayerUsingCaffeModels(String basename, bool useCaffeModel = false, bool useCommonInputBlob = true) |
|
{ |
|
String prototxt = _tf(basename + ".prototxt"); |
|
String caffemodel = _tf(basename + ".caffemodel"); |
|
|
|
String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy"); |
|
String outfile = _tf(basename + ".npy"); |
|
|
|
cv::setNumThreads(cv::getNumberOfCPUs()); |
|
|
|
Net net; |
|
{ |
|
Ptr<Importer> importer = createCaffeImporter(prototxt, (useCaffeModel) ? caffemodel : String()); |
|
ASSERT_TRUE(importer != NULL); |
|
importer->populateNet(net); |
|
} |
|
|
|
Blob inp = blobFromNPY(inpfile); |
|
Blob ref = blobFromNPY(outfile); |
|
|
|
net.setBlob(".input", inp); |
|
net.forward(); |
|
Blob out = net.getBlob("output"); |
|
|
|
normAssert(ref, out); |
|
} |
|
|
|
TEST(Layer_Test_Softmax, Accuracy) |
|
{ |
|
OCL_OFF(testLayerUsingCaffeModels("layer_softmax")); |
|
} |
|
OCL_TEST(Layer_Test_Softmax, Accuracy) |
|
{ |
|
OCL_ON(testLayerUsingCaffeModels("layer_softmax")); |
|
OCL_OFF(); |
|
} |
|
|
|
TEST(Layer_Test_LRN_spatial, Accuracy) |
|
{ |
|
OCL_OFF(testLayerUsingCaffeModels("layer_lrn_spatial")); |
|
} |
|
OCL_TEST(Layer_Test_LRN_spatial, Accuracy) |
|
{ |
|
OCL_ON(testLayerUsingCaffeModels("layer_lrn_spatial")); |
|
OCL_OFF(); |
|
} |
|
|
|
TEST(Layer_Test_LRN_channels, Accuracy) |
|
{ |
|
OCL_OFF(testLayerUsingCaffeModels("layer_lrn_channels")); |
|
} |
|
OCL_TEST(Layer_Test_LRN_channels, Accuracy) |
|
{ |
|
OCL_ON(testLayerUsingCaffeModels("layer_lrn_channels")); |
|
OCL_OFF(); |
|
} |
|
|
|
TEST(Layer_Test_Convolution, Accuracy) |
|
{ |
|
OCL_OFF(testLayerUsingCaffeModels("layer_convolution", true)); |
|
} |
|
OCL_TEST(Layer_Test_Convolution, Accuracy) |
|
{ |
|
OCL_ON(testLayerUsingCaffeModels("layer_convolution", true)); |
|
OCL_OFF(); |
|
} |
|
|
|
TEST(Layer_Test_DeConvolution, Accuracy) |
|
{ |
|
OCL_OFF(testLayerUsingCaffeModels("layer_deconvolution", true, false)); |
|
} |
|
OCL_TEST(Layer_Test_DeConvolution, Accuracy) |
|
{ |
|
OCL_ON(testLayerUsingCaffeModels("layer_deconvolution", true, false);); |
|
OCL_OFF(); |
|
} |
|
|
|
TEST(Layer_Test_InnerProduct, Accuracy) |
|
{ |
|
OCL_OFF(testLayerUsingCaffeModels("layer_inner_product", true)); |
|
} |
|
OCL_TEST(Layer_Test_InnerProduct, Accuracy) |
|
{ |
|
OCL_ON(testLayerUsingCaffeModels("layer_inner_product", true)); |
|
OCL_OFF(); |
|
} |
|
|
|
TEST(Layer_Test_Pooling_max, Accuracy) |
|
{ |
|
OCL_OFF(testLayerUsingCaffeModels("layer_pooling_max")); |
|
OCL_ON(); |
|
} |
|
OCL_TEST(Layer_Test_Pooling_max, Accuracy) |
|
{ |
|
OCL_ON(testLayerUsingCaffeModels("layer_pooling_max")); |
|
OCL_OFF(); |
|
} |
|
|
|
TEST(Layer_Test_Pooling_ave, Accuracy) |
|
{ |
|
OCL_OFF(testLayerUsingCaffeModels("layer_pooling_ave")); |
|
OCL_ON(); |
|
} |
|
OCL_TEST(Layer_Test_Pooling_ave, Accuracy) |
|
{ |
|
OCL_ON(testLayerUsingCaffeModels("layer_pooling_ave")); |
|
OCL_OFF(); |
|
} |
|
|
|
TEST(Layer_Test_MVN, Accuracy) |
|
{ |
|
OCL_OFF(testLayerUsingCaffeModels("layer_mvn")); |
|
} |
|
|
|
TEST(Layer_Test_Reshape, squeeze) |
|
{ |
|
LayerParams params; |
|
params.set("axis", 2); |
|
params.set("num_axes", 1); |
|
|
|
Blob inp(BlobShape(4, 3, 1, 2)); |
|
std::vector<Blob*> inpVec(1, &inp); |
|
std::vector<Blob> outVec; |
|
|
|
Ptr<Layer> rl = LayerFactory::createLayerInstance("Reshape", params); |
|
rl->allocate(inpVec, outVec); |
|
rl->forward(inpVec, outVec); |
|
|
|
EXPECT_EQ(outVec[0].shape(), BlobShape(4, 3, 2)); |
|
} |
|
|
|
//template<typename XMat> |
|
//static void test_Layer_Concat() |
|
//{ |
|
// Matx21f a(1.f, 1.f), b(2.f, 2.f), c(3.f, 3.f); |
|
// std::vector<Blob> res(1), src = { Blob(XMat(a)), Blob(XMat(b)), Blob(XMat(c)) }; |
|
// Blob ref(XMat(Matx23f(1.f, 2.f, 3.f, 1.f, 2.f, 3.f))); |
|
// |
|
// runLayer(ConcatLayer::create(1), src, res); |
|
// normAssert(ref, res[0]); |
|
//} |
|
//TEST(Layer_Concat, Accuracy) |
|
//{ |
|
// OCL_OFF(test_Layer_Concat<Mat>()); |
|
//} |
|
//OCL_TEST(Layer_Concat, Accuracy) |
|
//{ |
|
// OCL_ON(test_Layer_Concat<Mat>()); |
|
// OCL_OFF(); |
|
//} |
|
|
|
template<typename XMat> |
|
void test_Reshape_Split_Slice_layers() |
|
{ |
|
Net net; |
|
{ |
|
Ptr<Importer> importer = createCaffeImporter(_tf("reshape_and_slice_routines.prototxt")); |
|
ASSERT_TRUE(importer != NULL); |
|
importer->populateNet(net); |
|
} |
|
|
|
Blob input(BlobShape(6, 12)); |
|
RNG rng(0); |
|
rng.fill(input.getRef<XMat>(), RNG::UNIFORM, -1, 1); |
|
|
|
net.setBlob(".input", input); |
|
net.forward(); |
|
Blob output = net.getBlob("output"); |
|
|
|
normAssert(input, output); |
|
} |
|
TEST(Layer_Test_Reshape_Split_Slice, Accuracy) |
|
{ |
|
OCL_OFF(test_Reshape_Split_Slice_layers<Mat>()); |
|
} |
|
OCL_TEST(Layer_Test_Reshape_Split_Slice, Accuracy) |
|
{ |
|
OCL_ON(test_Reshape_Split_Slice_layers<UMat>()); |
|
OCL_OFF(); |
|
} |
|
|
|
class Layer_LSTM_Test : public ::testing::Test |
|
{ |
|
public: |
|
int numInp, numOut; |
|
Blob Wh, Wx, b; |
|
Ptr<LSTMLayer> layer; |
|
std::vector<Blob> inputs, outputs; |
|
|
|
Layer_LSTM_Test() {} |
|
|
|
void init(const BlobShape &inpShape_, const BlobShape &outShape_) |
|
{ |
|
numInp = inpShape_.total(); |
|
numOut = outShape_.total(); |
|
|
|
Wh = Blob(BlobShape(4 * numOut, numOut)); |
|
Wx = Blob(BlobShape(4 * numOut, numInp)); |
|
b = Blob(BlobShape(4 * numOut, 1)); |
|
|
|
layer = LSTMLayer::create(); |
|
layer->setWeights(Wh, Wx, b); |
|
layer->setOutShape(outShape_); |
|
} |
|
}; |
|
|
|
TEST_F(Layer_LSTM_Test, get_set_test) |
|
{ |
|
BlobShape TN(4); |
|
BlobShape inpShape(5, 3, 2), inpResShape = TN + inpShape; |
|
BlobShape outShape(3, 1, 2), outResShape = TN + outShape; |
|
|
|
init(inpShape, outShape); |
|
layer->setProduceCellOutput(true); |
|
layer->setUseTimstampsDim(false); |
|
layer->setOutShape(outShape); |
|
|
|
layer->setC(Blob(outResShape)); |
|
layer->setH(Blob(outResShape)); |
|
|
|
inputs.push_back(Blob(inpResShape)); |
|
runLayer(layer, inputs, outputs); |
|
|
|
EXPECT_EQ(2, outputs.size()); |
|
EXPECT_EQ(outResShape, outputs[0].shape()); |
|
EXPECT_EQ(outResShape, outputs[1].shape()); |
|
|
|
EXPECT_EQ(outResShape, layer->getC().shape()); |
|
EXPECT_EQ(outResShape, layer->getH().shape()); |
|
|
|
EXPECT_EQ(0, layer->inputNameToIndex("x")); |
|
EXPECT_EQ(0, layer->outputNameToIndex("h")); |
|
EXPECT_EQ(1, layer->outputNameToIndex("c")); |
|
} |
|
|
|
TEST(Layer_LSTM_Test_Accuracy_with_, CaffeRecurrent) |
|
{ |
|
Ptr<LSTMLayer> layer = LSTMLayer::create(); |
|
|
|
Blob Wx = blobFromNPY(_tf("lstm.prototxt.w_0.npy")); |
|
Blob Wh = blobFromNPY(_tf("lstm.prototxt.w_2.npy")); |
|
Blob b = blobFromNPY(_tf("lstm.prototxt.w_1.npy")); |
|
layer->setWeights(Wh, Wx, b); |
|
|
|
Blob inp = blobFromNPY(_tf("recurrent.input.npy")); |
|
std::vector<Blob> inputs(1, inp), outputs; |
|
runLayer(layer, inputs, outputs); |
|
|
|
Blob h_t_reference = blobFromNPY(_tf("lstm.prototxt.h_1.npy")); |
|
normAssert(h_t_reference, outputs[0]); |
|
} |
|
|
|
TEST(Layer_RNN_Test_Accuracy_with_, CaffeRecurrent) |
|
{ |
|
Ptr<RNNLayer> layer = RNNLayer::create(); |
|
|
|
layer->setWeights( |
|
blobFromNPY(_tf("rnn.prototxt.w_0.npy")), |
|
blobFromNPY(_tf("rnn.prototxt.w_1.npy")), |
|
blobFromNPY(_tf("rnn.prototxt.w_2.npy")), |
|
blobFromNPY(_tf("rnn.prototxt.w_3.npy")), |
|
blobFromNPY(_tf("rnn.prototxt.w_4.npy")) ); |
|
|
|
std::vector<Blob> output, input(1, blobFromNPY(_tf("recurrent.input.npy"))); |
|
runLayer(layer, input, output); |
|
|
|
Blob h_ref = blobFromNPY(_tf("rnn.prototxt.h_1.npy")); |
|
normAssert(h_ref, output[0]); |
|
} |
|
|
|
|
|
class Layer_RNN_Test : public ::testing::Test |
|
{ |
|
public: |
|
int nX, nH, nO, nT, nS; |
|
Blob Whh, Wxh, bh, Who, bo; |
|
Ptr<RNNLayer> layer; |
|
|
|
std::vector<Blob> inputs, outputs; |
|
|
|
Layer_RNN_Test() |
|
{ |
|
nT = 3; |
|
nS = 5; |
|
nX = 31; |
|
nH = 64; |
|
nO = 100; |
|
|
|
Whh = Blob(BlobShape(nH, nH)); |
|
Wxh = Blob(BlobShape(nH, nX)); |
|
bh = Blob(BlobShape(nH, 1)); |
|
Who = Blob(BlobShape(nO, nH)); |
|
bo = Blob(BlobShape(nO, 1)); |
|
|
|
layer = RNNLayer::create(); |
|
layer->setProduceHiddenOutput(true); |
|
layer->setWeights(Wxh, bh, Whh, Who, bo); |
|
} |
|
}; |
|
|
|
TEST_F(Layer_RNN_Test, get_set_test) |
|
{ |
|
inputs.push_back(Blob(BlobShape(nT, nS, 1, nX))); |
|
runLayer(layer, inputs, outputs); |
|
|
|
EXPECT_EQ(outputs.size(), 2); |
|
EXPECT_EQ(outputs[0].shape(), BlobShape(nT, nS, nO)); |
|
EXPECT_EQ(outputs[1].shape(), BlobShape(nT, nS, nH)); |
|
} |
|
|
|
}
|
|
|