Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

319 lines
13 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "trackerBoostingModel.hpp"
namespace cv
{
class TrackerBoostingImpl : public TrackerBoosting
{
public:
TrackerBoostingImpl( const TrackerBoosting::Params &parameters = TrackerBoosting::Params() );
void read( const FileNode& fn );
void write( FileStorage& fs ) const;
protected:
bool initImpl( const Mat& image, const Rect2d& boundingBox );
bool updateImpl( const Mat& image, Rect2d& boundingBox );
TrackerBoosting::Params params;
};
/*
* TrackerBoosting
*/
/*
* Parameters
*/
TrackerBoosting::Params::Params()
{
numClassifiers = 100;
samplerOverlap = 0.99f;
samplerSearchFactor = 1.8f;
iterationInit = 50;
featureSetNumFeatures = ( numClassifiers * 10 ) + iterationInit;
}
void TrackerBoosting::Params::read( const cv::FileNode& fn )
{
numClassifiers = fn["numClassifiers"];
samplerOverlap = fn["overlap"];
samplerSearchFactor = fn["samplerSearchFactor"];
iterationInit = fn["iterationInit"];
samplerSearchFactor = fn["searchFactor"];
}
void TrackerBoosting::Params::write( cv::FileStorage& fs ) const
{
fs << "numClassifiers" << numClassifiers;
fs << "overlap" << samplerOverlap;
fs << "searchFactor" << samplerSearchFactor;
fs << "iterationInit" << iterationInit;
fs << "samplerSearchFactor" << samplerSearchFactor;
}
/*
* Constructor
*/
Ptr<TrackerBoosting> TrackerBoosting::createTracker(const TrackerBoosting::Params &parameters){
return Ptr<TrackerBoostingImpl>(new TrackerBoostingImpl(parameters));
}
TrackerBoostingImpl::TrackerBoostingImpl( const TrackerBoostingImpl::Params &parameters ) :
params( parameters )
{
isInit = false;
}
void TrackerBoostingImpl::read( const cv::FileNode& fn )
{
params.read( fn );
}
void TrackerBoostingImpl::write( cv::FileStorage& fs ) const
{
params.write( fs );
}
bool TrackerBoostingImpl::initImpl( const Mat& image, const Rect2d& boundingBox )
{
srand (1);
//sampling
Mat_<int> intImage;
Mat_<double> intSqImage;
Mat image_;
cvtColor( image, image_, CV_RGB2GRAY );
integral( image_, intImage, intSqImage, CV_32S );
TrackerSamplerCS::Params CSparameters;
CSparameters.overlap = params.samplerOverlap;
CSparameters.searchFactor = params.samplerSearchFactor;
Ptr<TrackerSamplerAlgorithm> CSSampler = Ptr<TrackerSamplerCS>( new TrackerSamplerCS( CSparameters ) );
if( !sampler->addTrackerSamplerAlgorithm( CSSampler ) )
return false;
CSSampler.staticCast<TrackerSamplerCS>()->setMode( TrackerSamplerCS::MODE_POSITIVE );
sampler->sampling( intImage, boundingBox );
const std::vector<Mat> posSamples = sampler->getSamples();
CSSampler.staticCast<TrackerSamplerCS>()->setMode( TrackerSamplerCS::MODE_NEGATIVE );
sampler->sampling( intImage, boundingBox );
const std::vector<Mat> negSamples = sampler->getSamples();
if( posSamples.empty() || negSamples.empty() )
return false;
Rect ROI = CSSampler.staticCast<TrackerSamplerCS>()->getROI();
//compute HAAR features
TrackerFeatureHAAR::Params HAARparameters;
HAARparameters.numFeatures = params.featureSetNumFeatures;
HAARparameters.isIntegral = true;
HAARparameters.rectSize = Size( static_cast<int>(boundingBox.width), static_cast<int>(boundingBox.height) );
Ptr<TrackerFeature> trackerFeature = Ptr<TrackerFeatureHAAR>( new TrackerFeatureHAAR( HAARparameters ) );
if( !featureSet->addTrackerFeature( trackerFeature ) )
return false;
featureSet->extraction( posSamples );
const std::vector<Mat> posResponse = featureSet->getResponses();
featureSet->extraction( negSamples );
const std::vector<Mat> negResponse = featureSet->getResponses();
//Model
model = Ptr<TrackerBoostingModel>( new TrackerBoostingModel( boundingBox ) );
Ptr<TrackerStateEstimatorAdaBoosting> stateEstimator = Ptr<TrackerStateEstimatorAdaBoosting>(
new TrackerStateEstimatorAdaBoosting( params.numClassifiers, params.iterationInit, params.featureSetNumFeatures,
Size( static_cast<int>(boundingBox.width), static_cast<int>(boundingBox.height) ), ROI ) );
model->setTrackerStateEstimator( stateEstimator );
//Run model estimation and update for iterationInit iterations
for ( int i = 0; i < params.iterationInit; i++ )
{
//compute temp features
TrackerFeatureHAAR::Params HAARparameters2;
HAARparameters2.numFeatures = static_cast<int>( posSamples.size() + negSamples.size() );
HAARparameters2.isIntegral = true;
HAARparameters2.rectSize = Size( static_cast<int>(boundingBox.width), static_cast<int>(boundingBox.height) );
Ptr<TrackerFeatureHAAR> trackerFeature2 = Ptr<TrackerFeatureHAAR>( new TrackerFeatureHAAR( HAARparameters2 ) );
model.staticCast<TrackerBoostingModel>()->setMode( TrackerBoostingModel::MODE_NEGATIVE, negSamples );
model->modelEstimation( negResponse );
model.staticCast<TrackerBoostingModel>()->setMode( TrackerBoostingModel::MODE_POSITIVE, posSamples );
model->modelEstimation( posResponse );
model->modelUpdate();
//get replaced classifier and change the features
std::vector<int> replacedClassifier = stateEstimator->computeReplacedClassifier();
std::vector<int> swappedClassified = stateEstimator->computeSwappedClassifier();
for ( size_t j = 0; j < replacedClassifier.size(); j++ )
{
if( replacedClassifier[j] != -1 && swappedClassified[j] != -1 )
{
trackerFeature.staticCast<TrackerFeatureHAAR>()->swapFeature( replacedClassifier[j], swappedClassified[j] );
trackerFeature.staticCast<TrackerFeatureHAAR>()->swapFeature( swappedClassified[j], trackerFeature2->getFeatureAt( (int)j ) );
}
}
}
return true;
}
bool TrackerBoostingImpl::updateImpl( const Mat& image, Rect2d& boundingBox )
{
Mat_<int> intImage;
Mat_<double> intSqImage;
Mat image_;
cvtColor( image, image_, CV_RGB2GRAY );
integral( image_, intImage, intSqImage, CV_32S );
//get the last location [AAM] X(k-1)
Ptr<TrackerTargetState> lastLocation = model->getLastTargetState();
Rect lastBoundingBox( (int)lastLocation->getTargetPosition().x, (int)lastLocation->getTargetPosition().y, lastLocation->getTargetWidth(),
lastLocation->getTargetHeight() );
//sampling new frame based on last location
( sampler->getSamplers().at( 0 ).second ).staticCast<TrackerSamplerCS>()->setMode( TrackerSamplerCS::MODE_CLASSIFY );
sampler->sampling( intImage, lastBoundingBox );
const std::vector<Mat> detectSamples = sampler->getSamples();
Rect ROI = ( sampler->getSamplers().at( 0 ).second ).staticCast<TrackerSamplerCS>()->getROI();
if( detectSamples.empty() )
return false;
/*//TODO debug samples
Mat f;
image.copyTo( f );
for ( size_t i = 0; i < detectSamples.size(); i = i + 10 )
{
Size sz;
Point off;
detectSamples.at( i ).locateROI( sz, off );
rectangle( f, Rect( off.x, off.y, detectSamples.at( i ).cols, detectSamples.at( i ).rows ), Scalar( 255, 0, 0 ), 1 );
}*/
std::vector<Mat> responses;
Mat response;
std::vector<int> classifiers = model->getTrackerStateEstimator().staticCast<TrackerStateEstimatorAdaBoosting>()->computeSelectedWeakClassifier();
Ptr<TrackerFeatureHAAR> extractor = featureSet->getTrackerFeature()[0].second.staticCast<TrackerFeatureHAAR>();
extractor->extractSelected( classifiers, detectSamples, response );
responses.push_back( response );
//predict new location
ConfidenceMap cmap;
model.staticCast<TrackerBoostingModel>()->setMode( TrackerBoostingModel::MODE_CLASSIFY, detectSamples );
model.staticCast<TrackerBoostingModel>()->responseToConfidenceMap( responses, cmap );
model->getTrackerStateEstimator().staticCast<TrackerStateEstimatorAdaBoosting>()->setCurrentConfidenceMap( cmap );
model->getTrackerStateEstimator().staticCast<TrackerStateEstimatorAdaBoosting>()->setSampleROI( ROI );
if( !model->runStateEstimator() )
{
return false;
}
Ptr<TrackerTargetState> currentState = model->getLastTargetState();
boundingBox = Rect( (int)currentState->getTargetPosition().x, (int)currentState->getTargetPosition().y, currentState->getTargetWidth(),
currentState->getTargetHeight() );
/*//TODO debug
rectangle( f, lastBoundingBox, Scalar( 0, 255, 0 ), 1 );
rectangle( f, boundingBox, Scalar( 0, 0, 255 ), 1 );
imshow( "f", f );
//waitKey( 0 );*/
//sampling new frame based on new location
//Positive sampling
( sampler->getSamplers().at( 0 ).second ).staticCast<TrackerSamplerCS>()->setMode( TrackerSamplerCS::MODE_POSITIVE );
sampler->sampling( intImage, boundingBox );
const std::vector<Mat> posSamples = sampler->getSamples();
//Negative sampling
( sampler->getSamplers().at( 0 ).second ).staticCast<TrackerSamplerCS>()->setMode( TrackerSamplerCS::MODE_NEGATIVE );
sampler->sampling( intImage, boundingBox );
const std::vector<Mat> negSamples = sampler->getSamples();
if( posSamples.empty() || negSamples.empty() )
return false;
//extract features
featureSet->extraction( posSamples );
const std::vector<Mat> posResponse = featureSet->getResponses();
featureSet->extraction( negSamples );
const std::vector<Mat> negResponse = featureSet->getResponses();
//compute temp features
TrackerFeatureHAAR::Params HAARparameters2;
HAARparameters2.numFeatures = static_cast<int>( posSamples.size() + negSamples.size() );
HAARparameters2.isIntegral = true;
HAARparameters2.rectSize = Size( static_cast<int>(boundingBox.width), static_cast<int>(boundingBox.height) );
Ptr<TrackerFeatureHAAR> trackerFeature2 = Ptr<TrackerFeatureHAAR>( new TrackerFeatureHAAR( HAARparameters2 ) );
//model estimate
model.staticCast<TrackerBoostingModel>()->setMode( TrackerBoostingModel::MODE_NEGATIVE, negSamples );
model->modelEstimation( negResponse );
model.staticCast<TrackerBoostingModel>()->setMode( TrackerBoostingModel::MODE_POSITIVE, posSamples );
model->modelEstimation( posResponse );
//model update
model->modelUpdate();
//get replaced classifier and change the features
std::vector<int> replacedClassifier = model->getTrackerStateEstimator().staticCast<TrackerStateEstimatorAdaBoosting>()->computeReplacedClassifier();
std::vector<int> swappedClassified = model->getTrackerStateEstimator().staticCast<TrackerStateEstimatorAdaBoosting>()->computeSwappedClassifier();
for ( size_t j = 0; j < replacedClassifier.size(); j++ )
{
if( replacedClassifier[j] != -1 && swappedClassified[j] != -1 )
{
featureSet->getTrackerFeature().at( 0 ).second.staticCast<TrackerFeatureHAAR>()->swapFeature( replacedClassifier[j], swappedClassified[j] );
featureSet->getTrackerFeature().at( 0 ).second.staticCast<TrackerFeatureHAAR>()->swapFeature( swappedClassified[j],
trackerFeature2->getFeatureAt( (int)j ) );
}
}
return true;
}
} /* namespace cv */