You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
417 lines
16 KiB
417 lines
16 KiB
/* |
|
* Copyright (c) 2011,2012. Philipp Wagner <bytefish[at]gmx[dot]de>. |
|
* Released to public domain under terms of the BSD Simplified license. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions are met: |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* * Neither the name of the organization nor the names of its contributors |
|
* may be used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* See <http://www.opensource.org/licenses/bsd-license> |
|
*/ |
|
#include "precomp.hpp" |
|
#include "opencv2/face.hpp" |
|
#include "face_basic.hpp" |
|
|
|
namespace cv { namespace face { |
|
|
|
// Face Recognition based on Local Binary Patterns. |
|
// |
|
// Ahonen T, Hadid A. and Pietikäinen M. "Face description with local binary |
|
// patterns: Application to face recognition." IEEE Transactions on Pattern |
|
// Analysis and Machine Intelligence, 28(12):2037-2041. |
|
// |
|
class LBPH : public LBPHFaceRecognizer |
|
{ |
|
private: |
|
int _grid_x; |
|
int _grid_y; |
|
int _radius; |
|
int _neighbors; |
|
double _threshold; |
|
|
|
std::vector<Mat> _histograms; |
|
Mat _labels; |
|
|
|
// Computes a LBPH model with images in src and |
|
// corresponding labels in labels, possibly preserving |
|
// old model data. |
|
void train(InputArrayOfArrays src, InputArray labels, bool preserveData); |
|
|
|
|
|
public: |
|
using FaceRecognizer::save; |
|
using FaceRecognizer::load; |
|
|
|
// Initializes this LBPH Model. The current implementation is rather fixed |
|
// as it uses the Extended Local Binary Patterns per default. |
|
// |
|
// radius, neighbors are used in the local binary patterns creation. |
|
// grid_x, grid_y control the grid size of the spatial histograms. |
|
LBPH(int radius_=1, int neighbors_=8, |
|
int gridx=8, int gridy=8, |
|
double threshold = DBL_MAX) : |
|
_grid_x(gridx), |
|
_grid_y(gridy), |
|
_radius(radius_), |
|
_neighbors(neighbors_), |
|
_threshold(threshold) {} |
|
|
|
// Initializes and computes this LBPH Model. The current implementation is |
|
// rather fixed as it uses the Extended Local Binary Patterns per default. |
|
// |
|
// (radius=1), (neighbors=8) are used in the local binary patterns creation. |
|
// (grid_x=8), (grid_y=8) controls the grid size of the spatial histograms. |
|
LBPH(InputArrayOfArrays src, |
|
InputArray labels, |
|
int radius_=1, int neighbors_=8, |
|
int gridx=8, int gridy=8, |
|
double threshold = DBL_MAX) : |
|
_grid_x(gridx), |
|
_grid_y(gridy), |
|
_radius(radius_), |
|
_neighbors(neighbors_), |
|
_threshold(threshold) { |
|
train(src, labels); |
|
} |
|
|
|
~LBPH() { } |
|
|
|
// Computes a LBPH model with images in src and |
|
// corresponding labels in labels. |
|
void train(InputArrayOfArrays src, InputArray labels); |
|
|
|
// Updates this LBPH model with images in src and |
|
// corresponding labels in labels. |
|
void update(InputArrayOfArrays src, InputArray labels); |
|
|
|
// Send all predict results to caller side for custom result handling |
|
void predict(InputArray src, Ptr<PredictCollector> collector) const; |
|
|
|
// See FaceRecognizer::load. |
|
void load(const FileStorage& fs); |
|
|
|
// See FaceRecognizer::save. |
|
void save(FileStorage& fs) const; |
|
|
|
CV_IMPL_PROPERTY(int, GridX, _grid_x) |
|
CV_IMPL_PROPERTY(int, GridY, _grid_y) |
|
CV_IMPL_PROPERTY(int, Radius, _radius) |
|
CV_IMPL_PROPERTY(int, Neighbors, _neighbors) |
|
CV_IMPL_PROPERTY(double, Threshold, _threshold) |
|
CV_IMPL_PROPERTY_RO(std::vector<cv::Mat>, Histograms, _histograms) |
|
CV_IMPL_PROPERTY_RO(cv::Mat, Labels, _labels) |
|
}; |
|
|
|
|
|
void LBPH::load(const FileStorage& fs) { |
|
fs["radius"] >> _radius; |
|
fs["neighbors"] >> _neighbors; |
|
fs["grid_x"] >> _grid_x; |
|
fs["grid_y"] >> _grid_y; |
|
//read matrices |
|
readFileNodeList(fs["histograms"], _histograms); |
|
fs["labels"] >> _labels; |
|
const FileNode& fn = fs["labelsInfo"]; |
|
if (fn.type() == FileNode::SEQ) |
|
{ |
|
_labelsInfo.clear(); |
|
for (FileNodeIterator it = fn.begin(); it != fn.end();) |
|
{ |
|
LabelInfo item; |
|
it >> item; |
|
_labelsInfo.insert(std::make_pair(item.label, item.value)); |
|
} |
|
} |
|
} |
|
|
|
// See FaceRecognizer::save. |
|
void LBPH::save(FileStorage& fs) const { |
|
fs << "radius" << _radius; |
|
fs << "neighbors" << _neighbors; |
|
fs << "grid_x" << _grid_x; |
|
fs << "grid_y" << _grid_y; |
|
// write matrices |
|
writeFileNodeList(fs, "histograms", _histograms); |
|
fs << "labels" << _labels; |
|
fs << "labelsInfo" << "["; |
|
for (std::map<int, String>::const_iterator it = _labelsInfo.begin(); it != _labelsInfo.end(); it++) |
|
fs << LabelInfo(it->first, it->second); |
|
fs << "]"; |
|
} |
|
|
|
void LBPH::train(InputArrayOfArrays _in_src, InputArray _in_labels) { |
|
this->train(_in_src, _in_labels, false); |
|
} |
|
|
|
void LBPH::update(InputArrayOfArrays _in_src, InputArray _in_labels) { |
|
// got no data, just return |
|
if(_in_src.total() == 0) |
|
return; |
|
|
|
this->train(_in_src, _in_labels, true); |
|
} |
|
|
|
|
|
//------------------------------------------------------------------------------ |
|
// LBPH |
|
//------------------------------------------------------------------------------ |
|
|
|
template <typename _Tp> static |
|
void olbp_(InputArray _src, OutputArray _dst) { |
|
// get matrices |
|
Mat src = _src.getMat(); |
|
// allocate memory for result |
|
_dst.create(src.rows-2, src.cols-2, CV_8UC1); |
|
Mat dst = _dst.getMat(); |
|
// zero the result matrix |
|
dst.setTo(0); |
|
// calculate patterns |
|
for(int i=1;i<src.rows-1;i++) { |
|
for(int j=1;j<src.cols-1;j++) { |
|
_Tp center = src.at<_Tp>(i,j); |
|
unsigned char code = 0; |
|
code |= (src.at<_Tp>(i-1,j-1) >= center) << 7; |
|
code |= (src.at<_Tp>(i-1,j) >= center) << 6; |
|
code |= (src.at<_Tp>(i-1,j+1) >= center) << 5; |
|
code |= (src.at<_Tp>(i,j+1) >= center) << 4; |
|
code |= (src.at<_Tp>(i+1,j+1) >= center) << 3; |
|
code |= (src.at<_Tp>(i+1,j) >= center) << 2; |
|
code |= (src.at<_Tp>(i+1,j-1) >= center) << 1; |
|
code |= (src.at<_Tp>(i,j-1) >= center) << 0; |
|
dst.at<unsigned char>(i-1,j-1) = code; |
|
} |
|
} |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// cv::elbp |
|
//------------------------------------------------------------------------------ |
|
template <typename _Tp> static |
|
inline void elbp_(InputArray _src, OutputArray _dst, int radius, int neighbors) { |
|
//get matrices |
|
Mat src = _src.getMat(); |
|
// allocate memory for result |
|
_dst.create(src.rows-2*radius, src.cols-2*radius, CV_32SC1); |
|
Mat dst = _dst.getMat(); |
|
// zero |
|
dst.setTo(0); |
|
for(int n=0; n<neighbors; n++) { |
|
// sample points |
|
float x = static_cast<float>(radius * cos(2.0*CV_PI*n/static_cast<float>(neighbors))); |
|
float y = static_cast<float>(-radius * sin(2.0*CV_PI*n/static_cast<float>(neighbors))); |
|
// relative indices |
|
int fx = static_cast<int>(floor(x)); |
|
int fy = static_cast<int>(floor(y)); |
|
int cx = static_cast<int>(ceil(x)); |
|
int cy = static_cast<int>(ceil(y)); |
|
// fractional part |
|
float ty = y - fy; |
|
float tx = x - fx; |
|
// set interpolation weights |
|
float w1 = (1 - tx) * (1 - ty); |
|
float w2 = tx * (1 - ty); |
|
float w3 = (1 - tx) * ty; |
|
float w4 = tx * ty; |
|
// iterate through your data |
|
for(int i=radius; i < src.rows-radius;i++) { |
|
for(int j=radius;j < src.cols-radius;j++) { |
|
// calculate interpolated value |
|
float t = static_cast<float>(w1*src.at<_Tp>(i+fy,j+fx) + w2*src.at<_Tp>(i+fy,j+cx) + w3*src.at<_Tp>(i+cy,j+fx) + w4*src.at<_Tp>(i+cy,j+cx)); |
|
// floating point precision, so check some machine-dependent epsilon |
|
dst.at<int>(i-radius,j-radius) += ((t > src.at<_Tp>(i,j)) || (std::abs(t-src.at<_Tp>(i,j)) < std::numeric_limits<float>::epsilon())) << n; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void elbp(InputArray src, OutputArray dst, int radius, int neighbors) |
|
{ |
|
int type = src.type(); |
|
switch (type) { |
|
case CV_8SC1: elbp_<char>(src,dst, radius, neighbors); break; |
|
case CV_8UC1: elbp_<unsigned char>(src, dst, radius, neighbors); break; |
|
case CV_16SC1: elbp_<short>(src,dst, radius, neighbors); break; |
|
case CV_16UC1: elbp_<unsigned short>(src,dst, radius, neighbors); break; |
|
case CV_32SC1: elbp_<int>(src,dst, radius, neighbors); break; |
|
case CV_32FC1: elbp_<float>(src,dst, radius, neighbors); break; |
|
case CV_64FC1: elbp_<double>(src,dst, radius, neighbors); break; |
|
default: |
|
String error_msg = format("Using Original Local Binary Patterns for feature extraction only works on single-channel images (given %d). Please pass the image data as a grayscale image!", type); |
|
CV_Error(Error::StsNotImplemented, error_msg); |
|
break; |
|
} |
|
} |
|
|
|
static Mat |
|
histc_(const Mat& src, int minVal=0, int maxVal=255, bool normed=false) |
|
{ |
|
Mat result; |
|
// Establish the number of bins. |
|
int histSize = maxVal-minVal+1; |
|
// Set the ranges. |
|
float range[] = { static_cast<float>(minVal), static_cast<float>(maxVal+1) }; |
|
const float* histRange = { range }; |
|
// calc histogram |
|
calcHist(&src, 1, 0, Mat(), result, 1, &histSize, &histRange, true, false); |
|
// normalize |
|
if(normed) { |
|
result /= (int)src.total(); |
|
} |
|
return result.reshape(1,1); |
|
} |
|
|
|
static Mat histc(InputArray _src, int minVal, int maxVal, bool normed) |
|
{ |
|
Mat src = _src.getMat(); |
|
switch (src.type()) { |
|
case CV_8SC1: |
|
return histc_(Mat_<float>(src), minVal, maxVal, normed); |
|
break; |
|
case CV_8UC1: |
|
return histc_(src, minVal, maxVal, normed); |
|
break; |
|
case CV_16SC1: |
|
return histc_(Mat_<float>(src), minVal, maxVal, normed); |
|
break; |
|
case CV_16UC1: |
|
return histc_(src, minVal, maxVal, normed); |
|
break; |
|
case CV_32SC1: |
|
return histc_(Mat_<float>(src), minVal, maxVal, normed); |
|
break; |
|
case CV_32FC1: |
|
return histc_(src, minVal, maxVal, normed); |
|
break; |
|
default: |
|
CV_Error(Error::StsUnmatchedFormats, "This type is not implemented yet."); break; |
|
} |
|
return Mat(); |
|
} |
|
|
|
|
|
static Mat spatial_histogram(InputArray _src, int numPatterns, |
|
int grid_x, int grid_y, bool /*normed*/) |
|
{ |
|
Mat src = _src.getMat(); |
|
// calculate LBP patch size |
|
int width = src.cols/grid_x; |
|
int height = src.rows/grid_y; |
|
// allocate memory for the spatial histogram |
|
Mat result = Mat::zeros(grid_x * grid_y, numPatterns, CV_32FC1); |
|
// return matrix with zeros if no data was given |
|
if(src.empty()) |
|
return result.reshape(1,1); |
|
// initial result_row |
|
int resultRowIdx = 0; |
|
// iterate through grid |
|
for(int i = 0; i < grid_y; i++) { |
|
for(int j = 0; j < grid_x; j++) { |
|
Mat src_cell = Mat(src, Range(i*height,(i+1)*height), Range(j*width,(j+1)*width)); |
|
Mat cell_hist = histc(src_cell, 0, (numPatterns-1), true); |
|
// copy to the result matrix |
|
Mat result_row = result.row(resultRowIdx); |
|
cell_hist.reshape(1,1).convertTo(result_row, CV_32FC1); |
|
// increase row count in result matrix |
|
resultRowIdx++; |
|
} |
|
} |
|
// return result as reshaped feature vector |
|
return result.reshape(1,1); |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// wrapper to cv::elbp (extended local binary patterns) |
|
//------------------------------------------------------------------------------ |
|
|
|
static Mat elbp(InputArray src, int radius, int neighbors) { |
|
Mat dst; |
|
elbp(src, dst, radius, neighbors); |
|
return dst; |
|
} |
|
|
|
void LBPH::train(InputArrayOfArrays _in_src, InputArray _in_labels, bool preserveData) { |
|
if(_in_src.kind() != _InputArray::STD_VECTOR_MAT && _in_src.kind() != _InputArray::STD_VECTOR_VECTOR) { |
|
String error_message = "The images are expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< std::vector<...> >)."; |
|
CV_Error(Error::StsBadArg, error_message); |
|
} |
|
if(_in_src.total() == 0) { |
|
String error_message = format("Empty training data was given. You'll need more than one sample to learn a model."); |
|
CV_Error(Error::StsUnsupportedFormat, error_message); |
|
} else if(_in_labels.getMat().type() != CV_32SC1) { |
|
String error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _in_labels.type()); |
|
CV_Error(Error::StsUnsupportedFormat, error_message); |
|
} |
|
// get the vector of matrices |
|
std::vector<Mat> src; |
|
_in_src.getMatVector(src); |
|
// get the label matrix |
|
Mat labels = _in_labels.getMat(); |
|
// check if data is well- aligned |
|
if(labels.total() != src.size()) { |
|
String error_message = format("The number of samples (src) must equal the number of labels (labels). Was len(samples)=%d, len(labels)=%d.", src.size(), _labels.total()); |
|
CV_Error(Error::StsBadArg, error_message); |
|
} |
|
// if this model should be trained without preserving old data, delete old model data |
|
if(!preserveData) { |
|
_labels.release(); |
|
_histograms.clear(); |
|
} |
|
// append labels to _labels matrix |
|
for(size_t labelIdx = 0; labelIdx < labels.total(); labelIdx++) { |
|
_labels.push_back(labels.at<int>((int)labelIdx)); |
|
} |
|
// store the spatial histograms of the original data |
|
for(size_t sampleIdx = 0; sampleIdx < src.size(); sampleIdx++) { |
|
// calculate lbp image |
|
Mat lbp_image = elbp(src[sampleIdx], _radius, _neighbors); |
|
// get spatial histogram from this lbp image |
|
Mat p = spatial_histogram( |
|
lbp_image, /* lbp_image */ |
|
static_cast<int>(std::pow(2.0, static_cast<double>(_neighbors))), /* number of possible patterns */ |
|
_grid_x, /* grid size x */ |
|
_grid_y, /* grid size y */ |
|
true); |
|
// add to templates |
|
_histograms.push_back(p); |
|
} |
|
} |
|
|
|
void LBPH::predict(InputArray _src, Ptr<PredictCollector> collector) const { |
|
if(_histograms.empty()) { |
|
// throw error if no data (or simply return -1?) |
|
String error_message = "This LBPH model is not computed yet. Did you call the train method?"; |
|
CV_Error(Error::StsBadArg, error_message); |
|
} |
|
Mat src = _src.getMat(); |
|
// get the spatial histogram from input image |
|
Mat lbp_image = elbp(src, _radius, _neighbors); |
|
Mat query = spatial_histogram( |
|
lbp_image, /* lbp_image */ |
|
static_cast<int>(std::pow(2.0, static_cast<double>(_neighbors))), /* number of possible patterns */ |
|
_grid_x, /* grid size x */ |
|
_grid_y, /* grid size y */ |
|
true /* normed histograms */); |
|
// find 1-nearest neighbor |
|
collector->init((int)_histograms.size()); |
|
for (size_t sampleIdx = 0; sampleIdx < _histograms.size(); sampleIdx++) { |
|
double dist = compareHist(_histograms[sampleIdx], query, HISTCMP_CHISQR_ALT); |
|
int label = _labels.at<int>((int)sampleIdx); |
|
if (!collector->collect(label, dist))return; |
|
} |
|
} |
|
|
|
Ptr<LBPHFaceRecognizer> createLBPHFaceRecognizer(int radius, int neighbors, |
|
int grid_x, int grid_y, double threshold) |
|
{ |
|
return makePtr<LBPH>(radius, neighbors, grid_x, grid_y, threshold); |
|
} |
|
|
|
|
|
}}
|
|
|