Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

379 lines
10 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/tracking/onlineMIL.hpp"
template<class T> class SortableElementRev
{
public:
T _val;
int _ind;
SortableElementRev() :
_ind( 0 )
{
}
SortableElementRev( T val, int ind )
{
_val = val;
_ind = ind;
}
bool operator<( SortableElementRev<T> &b )
{
return ( _val < b._val );
}
;
};
static bool CompareSortableElementRev( const SortableElementRev<float>& i, const SortableElementRev<float>& j )
{
return i._val < j._val;
}
template<class T> void sort_order_des( std::vector<T> &v, std::vector<int> &order )
{
uint n = (uint) v.size();
std::vector<SortableElementRev<T> > v2;
v2.resize( n );
order.clear();
order.resize( n );
for ( uint i = 0; i < n; i++ )
{
v2[i]._ind = i;
v2[i]._val = v[i];
}
//std::sort( v2.begin(), v2.end() );
std::sort( v2.begin(), v2.end(), CompareSortableElementRev );
for ( uint i = 0; i < n; i++ )
{
order[i] = v2[i]._ind;
v[i] = v2[i]._val;
}
}
;
namespace cv
{
//implementations for strong classifier
ClfMilBoost::Params::Params()
{
_numSel = 50;
_numFeat = 250;
_lRate = 0.85;
}
ClfMilBoost::ClfMilBoost()
{
_myParams = ClfMilBoost::Params();
_numsamples = 0;
}
ClfMilBoost::~ClfMilBoost()
{
_selectors.clear();
for ( size_t i = 0; i < _weakclf.size(); i++ )
delete _weakclf.at( i );
}
void ClfMilBoost::init( const ClfMilBoost::Params &parameters )
{
_myParams = parameters;
_numsamples = 0;
//_ftrs = Ftr::generate( _myParams->_ftrParams, _myParams->_numFeat );
// if( params->_storeFtrHistory )
// Ftr::toViz( _ftrs, "haarftrs" );
_weakclf.resize( _myParams._numFeat );
for ( int k = 0; k < _myParams._numFeat; k++ )
{
_weakclf[k] = new ClfOnlineStump( k );
_weakclf[k]->_lRate = _myParams._lRate;
}
_counter = 0;
}
void ClfMilBoost::update( const Mat& posx, const Mat& negx )
{
int numneg = negx.rows;
int numpos = posx.rows;
// compute ftrs
//if( !posx.ftrsComputed() )
// Ftr::compute( posx, _ftrs );
//if( !negx.ftrsComputed() )
// Ftr::compute( negx, _ftrs );
// initialize H
static std::vector<float> Hpos, Hneg;
Hpos.clear();
Hneg.clear();
Hpos.resize( posx.rows, 0.0f ), Hneg.resize( negx.rows, 0.0f );
_selectors.clear();
std::vector<float> posw( posx.rows ), negw( negx.rows );
std::vector<std::vector<float> > pospred( _weakclf.size() ), negpred( _weakclf.size() );
// train all weak classifiers without weights
#ifdef _OPENMP
#pragma omp parallel for
#endif
for ( int m = 0; m < _myParams._numFeat; m++ )
{
_weakclf[m]->update( posx, negx );
pospred[m] = _weakclf[m]->classifySetF( posx );
negpred[m] = _weakclf[m]->classifySetF( negx );
}
// pick the best features
for ( int s = 0; s < _myParams._numSel; s++ )
{
// compute errors/likl for all weak clfs
std::vector<float> poslikl( _weakclf.size(), 1.0f ), neglikl( _weakclf.size() ), likl( _weakclf.size() );
#ifdef _OPENMP
#pragma omp parallel for
#endif
for ( int w = 0; w < (int) _weakclf.size(); w++ )
{
float lll = 1.0f;
for ( int j = 0; j < numpos; j++ )
lll *= ( 1 - sigmoid( Hpos[j] + pospred[w][j] ) );
poslikl[w] = (float) -log( 1 - lll + 1e-5 );
lll = 0.0f;
for ( int j = 0; j < numneg; j++ )
lll += (float) -log( 1e-5f + 1 - sigmoid( Hneg[j] + negpred[w][j] ) );
neglikl[w] = lll;
likl[w] = poslikl[w] / numpos + neglikl[w] / numneg;
}
// pick best weak clf
std::vector<int> order;
sort_order_des( likl, order );
// find best weakclf that isn't already included
for ( uint k = 0; k < order.size(); k++ )
if( std::count( _selectors.begin(), _selectors.end(), order[k] ) == 0 )
{
_selectors.push_back( order[k] );
break;
}
// update H = H + h_m
#ifdef _OPENMP
#pragma omp parallel for
#endif
for ( int k = 0; k < posx.rows; k++ )
Hpos[k] += pospred[_selectors[s]][k];
#ifdef _OPENMP
#pragma omp parallel for
#endif
for ( int k = 0; k < negx.rows; k++ )
Hneg[k] += negpred[_selectors[s]][k];
}
//if( _myParams->_storeFtrHistory )
//for ( uint j = 0; j < _selectors.size(); j++ )
// _ftrHist( _selectors[j], _counter ) = 1.0f / ( j + 1 );
_counter++;
/* */
return;
}
std::vector<float> ClfMilBoost::classify( const Mat& x, bool logR )
{
int numsamples = x.rows;
std::vector<float> res( numsamples );
std::vector<float> tr;
for ( uint w = 0; w < _selectors.size(); w++ )
{
tr = _weakclf[_selectors[w]]->classifySetF( x );
#ifdef _OPENMP
#pragma omp parallel for
#endif
for ( int j = 0; j < numsamples; j++ )
{
res[j] += tr[j];
}
}
// return probabilities or log odds ratio
if( !logR )
{
#ifdef _OPENMP
#pragma omp parallel for
#endif
for ( int j = 0; j < (int) res.size(); j++ )
{
res[j] = sigmoid( res[j] );
}
}
return res;
}
//implementations for weak classifier
ClfOnlineStump::ClfOnlineStump()
{
_trained = false;
_ind = -1;
init();
}
ClfOnlineStump::ClfOnlineStump( int ind )
{
_trained = false;
_ind = ind;
init();
}
void ClfOnlineStump::init()
{
_mu0 = 0;
_mu1 = 0;
_sig0 = 1;
_sig1 = 1;
_lRate = 0.85f;
_trained = false;
}
void ClfOnlineStump::update( const Mat& posx, const Mat& negx, const Mat_<float>& /*posw*/, const Mat_<float>& /*negw*/)
{
//std::cout << " ClfOnlineStump::update" << _ind << std::endl;
float posmu = 0.0, negmu = 0.0;
if( posx.cols > 0 )
posmu = float( mean( posx.col( _ind ) )[0] );
if( negx.cols > 0 )
negmu = float( mean( negx.col( _ind ) )[0] );
if( _trained )
{
if( posx.cols > 0 )
{
_mu1 = ( _lRate * _mu1 + ( 1 - _lRate ) * posmu );
cv::Mat diff = posx.col( _ind ) - _mu1;
_sig1 = _lRate * _sig1 + ( 1 - _lRate ) * float( mean( diff.mul( diff ) )[0] );
}
if( negx.cols > 0 )
{
_mu0 = ( _lRate * _mu0 + ( 1 - _lRate ) * negmu );
cv::Mat diff = negx.col( _ind ) - _mu0;
_sig0 = _lRate * _sig0 + ( 1 - _lRate ) * float( mean( diff.mul( diff ) )[0] );
}
_q = ( _mu1 - _mu0 ) / 2;
_s = sign( _mu1 - _mu0 );
_log_n0 = std::log( float( 1.0f / pow( _sig0, 0.5f ) ) );
_log_n1 = std::log( float( 1.0f / pow( _sig1, 0.5f ) ) );
//_e1 = -1.0f/(2.0f*_sig1+1e-99f);
//_e0 = -1.0f/(2.0f*_sig0+1e-99f);
_e1 = -1.0f / ( 2.0f * _sig1 + std::numeric_limits<float>::min() );
_e0 = -1.0f / ( 2.0f * _sig0 + std::numeric_limits<float>::min() );
}
else
{
_trained = true;
if( posx.cols > 0 )
{
_mu1 = posmu;
cv::Scalar scal_mean, scal_std_dev;
cv::meanStdDev( posx.col( _ind ), scal_mean, scal_std_dev );
_sig1 = float( scal_std_dev[0] ) * float( scal_std_dev[0] ) + 1e-9f;
}
if( negx.cols > 0 )
{
_mu0 = negmu;
cv::Scalar scal_mean, scal_std_dev;
cv::meanStdDev( negx.col( _ind ), scal_mean, scal_std_dev );
_sig0 = float( scal_std_dev[0] ) * float( scal_std_dev[0] ) + 1e-9f;
}
_q = ( _mu1 - _mu0 ) / 2;
_s = sign( _mu1 - _mu0 );
_log_n0 = std::log( float( 1.0f / pow( _sig0, 0.5f ) ) );
_log_n1 = std::log( float( 1.0f / pow( _sig1, 0.5f ) ) );
//_e1 = -1.0f/(2.0f*_sig1+1e-99f);
//_e0 = -1.0f/(2.0f*_sig0+1e-99f);
_e1 = -1.0f / ( 2.0f * _sig1 + std::numeric_limits<float>::min() );
_e0 = -1.0f / ( 2.0f * _sig0 + std::numeric_limits<float>::min() );
}
}
bool ClfOnlineStump::classify( const Mat& x, int i )
{
float xx = x.at<float>( i, _ind );
double log_p0 = ( xx - _mu0 ) * ( xx - _mu0 ) * _e0 + _log_n0;
double log_p1 = ( xx - _mu1 ) * ( xx - _mu1 ) * _e1 + _log_n1;
return log_p1 > log_p0;
}
float ClfOnlineStump::classifyF( const Mat& x, int i )
{
float xx = x.at<float>( i, _ind );
double log_p0 = ( xx - _mu0 ) * ( xx - _mu0 ) * _e0 + _log_n0;
double log_p1 = ( xx - _mu1 ) * ( xx - _mu1 ) * _e1 + _log_n1;
return float( log_p1 - log_p0 );
}
inline std::vector<float> ClfOnlineStump::classifySetF( const Mat& x )
{
std::vector<float> res( x.rows );
#ifdef _OPENMP
#pragma omp parallel for
#endif
for ( int k = 0; k < (int) res.size(); k++ )
{
res[k] = classifyF( x, k );
}
return res;
}
} /* namespace cv */