You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
175 lines
6.2 KiB
175 lines
6.2 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2014, Itseez Inc, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Itseez Inc or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "opencv2/core.hpp" |
|
#include "opencv2/imgcodecs.hpp" |
|
|
|
#include "opencv2/face.hpp" |
|
#include "opencv2/datasets/fr_lfw.hpp" |
|
|
|
#include <iostream> |
|
|
|
#include <cstdio> |
|
|
|
#include <string> |
|
#include <vector> |
|
#include <map> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::datasets; |
|
using namespace cv::face; |
|
|
|
map<string, int> people; |
|
|
|
int getLabel(const string &imagePath); |
|
int getLabel(const string &imagePath) |
|
{ |
|
size_t pos = imagePath.find('/'); |
|
string curr = imagePath.substr(0, pos); |
|
map<string, int>::iterator it = people.find(curr); |
|
if (people.end() == it) |
|
{ |
|
people.insert(make_pair(curr, (int)people.size())); |
|
it = people.find(curr); |
|
} |
|
return (*it).second; |
|
} |
|
|
|
int main(int argc, const char *argv[]) |
|
{ |
|
const char *keys = |
|
"{ help h usage ? | | show this message }" |
|
"{ path p |true| path to dataset (lfw2 folder) }"; |
|
CommandLineParser parser(argc, argv, keys); |
|
string path(parser.get<string>("path")); |
|
if (parser.has("help") || path=="true") |
|
{ |
|
parser.printMessage(); |
|
return -1; |
|
} |
|
|
|
// These vectors hold the images and corresponding labels. |
|
vector<Mat> images; |
|
vector<int> labels; |
|
|
|
// load dataset |
|
Ptr<FR_lfw> dataset = FR_lfw::create(); |
|
dataset->load(path); |
|
|
|
unsigned int numSplits = dataset->getNumSplits(); |
|
printf("splits number: %u\n", numSplits); |
|
printf("train size: %u\n", (unsigned int)dataset->getTrain().size()); |
|
printf("test size: %u\n", (unsigned int)dataset->getTest().size()); |
|
|
|
for (unsigned int i=0; i<dataset->getTrain().size(); ++i) |
|
{ |
|
FR_lfwObj *example = static_cast<FR_lfwObj *>(dataset->getTrain()[i].get()); |
|
|
|
int currNum = getLabel(example->image1); |
|
Mat img = imread(path+example->image1, IMREAD_GRAYSCALE); |
|
images.push_back(img); |
|
labels.push_back(currNum); |
|
|
|
currNum = getLabel(example->image2); |
|
img = imread(path+example->image2, IMREAD_GRAYSCALE); |
|
images.push_back(img); |
|
labels.push_back(currNum); |
|
} |
|
|
|
// 2200 pairsDevTrain, first split: correct: 373, from: 600 -> 62.1667% |
|
Ptr<FaceRecognizer> model = createLBPHFaceRecognizer(); |
|
// 2200 pairsDevTrain, first split: correct: correct: 369, from: 600 -> 61.5% |
|
//Ptr<FaceRecognizer> model = createEigenFaceRecognizer(); |
|
// 2200 pairsDevTrain, first split: correct: 372, from: 600 -> 62% |
|
//Ptr<FaceRecognizer> model = createFisherFaceRecognizer(); |
|
|
|
model->train(images, labels); |
|
//string saveModelPath = "face-rec-model.txt"; |
|
//cout << "Saving the trained model to " << saveModelPath << endl; |
|
//model->save(saveModelPath); |
|
|
|
vector<double> p; |
|
for (unsigned int j=0; j<numSplits; ++j) |
|
{ |
|
unsigned int incorrect = 0, correct = 0; |
|
vector < Ptr<Object> > &curr = dataset->getTest(j); |
|
for (unsigned int i=0; i<curr.size(); ++i) |
|
{ |
|
FR_lfwObj *example = static_cast<FR_lfwObj *>(curr[i].get()); |
|
|
|
//int currNum = getLabel(example->image1); |
|
Mat img = imread(path+example->image1, IMREAD_GRAYSCALE); |
|
int predictedLabel1 = model->predict(img); |
|
|
|
//currNum = getLabel(example->image2); |
|
img = imread(path+example->image2, IMREAD_GRAYSCALE); |
|
int predictedLabel2 = model->predict(img); |
|
|
|
if ((predictedLabel1 == predictedLabel2 && example->same) || |
|
(predictedLabel1 != predictedLabel2 && !example->same)) |
|
{ |
|
correct++; |
|
} else |
|
{ |
|
incorrect++; |
|
} |
|
} |
|
p.push_back(1.0*correct/(correct+incorrect)); |
|
printf("correct: %u, from: %u -> %f\n", correct, correct+incorrect, p.back()); |
|
} |
|
double mu = 0.0; |
|
for (vector<double>::iterator it=p.begin(); it!=p.end(); ++it) |
|
{ |
|
mu += *it; |
|
} |
|
mu /= p.size(); |
|
double sigma = 0.0; |
|
for (vector<double>::iterator it=p.begin(); it!=p.end(); ++it) |
|
{ |
|
sigma += (*it - mu)*(*it - mu); |
|
} |
|
sigma = sqrt(sigma/p.size()); |
|
double se = sigma/sqrt(p.size()); |
|
printf("estimated mean accuracy: %f and the standard error of the mean: %f\n", mu, se); |
|
|
|
return 0; |
|
}
|
|
|