You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
131 lines
3.3 KiB
131 lines
3.3 KiB
/** |
|
* @file create_read_write_datasets.cpp |
|
* @author Fangjun Kuang <csukuangfj dot at gmail dot com> |
|
* @date December 2017 |
|
* |
|
* @brief It demonstrates how to create a dataset, how |
|
* to write a cv::Mat to the dataset and how to |
|
* read a cv::Mat from it. |
|
* |
|
*/ |
|
|
|
//! [tutorial] |
|
#include <iostream> |
|
|
|
#include <opencv2/core.hpp> |
|
#include <opencv2/hdf.hpp> |
|
|
|
using namespace cv; |
|
|
|
static void write_root_group_single_channel() |
|
{ |
|
String filename = "root_group_single_channel.h5"; |
|
String dataset_name = "/single"; // Note that it is a child of the root group / |
|
|
|
// prepare data |
|
Mat data; |
|
data = (cv::Mat_<float>(2, 3) << 0, 1, 2, 3, 4, 5, 6); |
|
|
|
//! [tutorial_open_file] |
|
Ptr<hdf::HDF5> h5io = hdf::open(filename); |
|
//! [tutorial_open_file] |
|
|
|
//! [tutorial_write_root_single_channel] |
|
// write data to the given dataset |
|
// the dataset "/single" is created automatically, since it is a child of the root |
|
h5io->dswrite(data, dataset_name); |
|
//! [tutorial_write_root_single_channel] |
|
|
|
//! [tutorial_read_dataset] |
|
Mat expected; |
|
h5io->dsread(expected, dataset_name); |
|
//! [tutorial_read_dataset] |
|
|
|
//! [tutorial_check_result] |
|
double diff = norm(data - expected); |
|
CV_Assert(abs(diff) < 1e-10); |
|
//! [tutorial_check_result] |
|
|
|
h5io->close(); |
|
} |
|
|
|
static void write_single_channel() |
|
{ |
|
String filename = "single_channel.h5"; |
|
String parent_name = "/data"; |
|
String dataset_name = parent_name + "/single"; |
|
|
|
// prepare data |
|
Mat data; |
|
data = (cv::Mat_<float>(2, 3) << 0, 1, 2, 3, 4, 5); |
|
|
|
Ptr<hdf::HDF5> h5io = hdf::open(filename); |
|
|
|
//! [tutorial_create_dataset] |
|
// first we need to create the parent group |
|
if (!h5io->hlexists(parent_name)) h5io->grcreate(parent_name); |
|
|
|
// create the dataset if it not exists |
|
if (!h5io->hlexists(dataset_name)) h5io->dscreate(data.rows, data.cols, data.type(), dataset_name); |
|
//! [tutorial_create_dataset] |
|
|
|
// the following is the same with the above function write_root_group_single_channel() |
|
|
|
h5io->dswrite(data, dataset_name); |
|
|
|
Mat expected; |
|
h5io->dsread(expected, dataset_name); |
|
|
|
double diff = norm(data - expected); |
|
CV_Assert(abs(diff) < 1e-10); |
|
|
|
h5io->close(); |
|
} |
|
|
|
/* |
|
* creating, reading and writing multiple-channel matrices |
|
* are the same with single channel matrices |
|
*/ |
|
static void write_multiple_channels() |
|
{ |
|
String filename = "two_channels.h5"; |
|
String parent_name = "/data"; |
|
String dataset_name = parent_name + "/two_channels"; |
|
|
|
// prepare data |
|
Mat data(2, 3, CV_32SC2); |
|
for (size_t i = 0; i < data.total()*data.channels(); i++) |
|
((int*) data.data)[i] = (int)i; |
|
|
|
Ptr<hdf::HDF5> h5io = hdf::open(filename); |
|
|
|
// first we need to create the parent group |
|
if (!h5io->hlexists(parent_name)) h5io->grcreate(parent_name); |
|
|
|
// create the dataset if it not exists |
|
if (!h5io->hlexists(dataset_name)) h5io->dscreate(data.rows, data.cols, data.type(), dataset_name); |
|
|
|
// the following is the same with the above function write_root_group_single_channel() |
|
|
|
h5io->dswrite(data, dataset_name); |
|
|
|
Mat expected; |
|
h5io->dsread(expected, dataset_name); |
|
|
|
double diff = norm(data - expected); |
|
CV_Assert(abs(diff) < 1e-10); |
|
|
|
h5io->close(); |
|
} |
|
|
|
int main() |
|
{ |
|
write_root_group_single_channel(); |
|
|
|
write_single_channel(); |
|
|
|
write_multiple_channels(); |
|
|
|
return 0; |
|
} |
|
//! [tutorial]
|
|
|