Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

92 lines
2.3 KiB

#include <string>
using std::string;
#include <vector>
using std::vector;
#include <iostream>
using std::cerr;
using std::endl;
#include <opencv2/core.hpp>
using cv::Rect;
using cv::Size;
using cv::Mat;
using cv::Mat_;
using cv::Vec3b;
#include <opencv2/highgui.hpp>
using cv::imread;
using cv::imwrite;
#include <opencv2/core/utility.hpp>
using cv::CommandLineParser;
using cv::FileStorage;
#include <opencv2/xobjdetect.hpp>
using cv::xobjdetect::ICFDetector;
static Mat visualize(const Mat &image, const vector<Rect> &objects)
{
CV_Assert(image.type() == CV_8UC3);
Mat_<Vec3b> img = image.clone();
for( size_t j = 0; j < objects.size(); ++j )
{
Rect obj = objects[j];
int x = obj.x;
int y = obj.y;
int width = obj.width;
int height = obj.height;
for( int i = y; i <= y + height; ++i ) {
img(i, x) = Vec3b(255, 0, 0);
img(i, x + width) = Vec3b(255, 0, 0);
}
for( int i = x; i <= x + width; ++i) {
img(y, i) = Vec3b(255, 0, 0);
img(y + height, i) = Vec3b(255, 0, 0);
}
}
return img;
}
int main(int argc, char *argv[])
{
const string keys =
"{help | | print this message}"
"{model_filename | model.xml | filename for reading model}"
"{image_path | test.png | path to image for detection}"
"{out_image_path | out.png | path to image for output}"
"{threshold | 0.0 | threshold for cascade}"
;
CommandLineParser parser(argc, argv, keys);
parser.about("FCW detection");
if( parser.has("help") || argc == 1)
{
parser.printMessage();
return 0;
}
string model_filename = parser.get<string>("model_filename");
string image_path = parser.get<string>("image_path");
string out_image_path = parser.get<string>("out_image_path");
float threshold = parser.get<float>("threshold");
if( !parser.check() )
{
parser.printErrors();
return 1;
}
ICFDetector detector;
FileStorage fs(model_filename, FileStorage::READ);
fs["icfdetector"] >> detector;
fs.release();
vector<Rect> objects;
Mat img = imread(image_path);
detector.detect(img, objects, 1.1, Size(40, 40),
Size(300, 300), threshold);
imwrite(out_image_path, visualize(img, objects));
}