You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
232 lines
6.6 KiB
232 lines
6.6 KiB
/* |
|
Sample of using OpenCV dnn module with Torch ENet model. |
|
*/ |
|
|
|
#include <opencv2/dnn.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
#include <fstream> |
|
#include <iostream> |
|
#include <cstdlib> |
|
#include <sstream> |
|
using namespace std; |
|
|
|
const String keys = |
|
"{help h || Sample app for loading ENet Torch model. " |
|
"The model and class names list can be downloaded here: " |
|
"https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa }" |
|
"{model m || path to Torch .net model file (model_best.net) }" |
|
"{image i || path to image file }" |
|
"{c_names c || path to file with classnames for channels (optional, categories.txt) }" |
|
"{result r || path to save output blob (optional, binary format, NCHW order) }" |
|
"{show s || whether to show all output channels or not}" |
|
; |
|
|
|
std::vector<String> readClassNames(const char *filename); |
|
static void colorizeSegmentation(Blob &score, Mat &segm, |
|
Mat &legend, vector<String> &classNames); |
|
|
|
int main(int argc, char **argv) |
|
{ |
|
cv::CommandLineParser parser(argc, argv, keys); |
|
|
|
if (parser.has("help")) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
String modelFile = parser.get<String>("model"); |
|
String imageFile = parser.get<String>("image"); |
|
|
|
if (!parser.check()) |
|
{ |
|
parser.printErrors(); |
|
return 0; |
|
} |
|
|
|
String classNamesFile = parser.get<String>("c_names"); |
|
String resultFile = parser.get<String>("result"); |
|
|
|
//! [Create the importer of TensorFlow model] |
|
Ptr<dnn::Importer> importer; |
|
try //Try to import TensorFlow AlexNet model |
|
{ |
|
importer = dnn::createTorchImporter(modelFile); |
|
} |
|
catch (const cv::Exception &err) //Importer can throw errors, we will catch them |
|
{ |
|
std::cerr << err.msg << std::endl; |
|
} |
|
//! [Create the importer of Caffe model] |
|
|
|
if (!importer) |
|
{ |
|
std::cerr << "Can't load network by using the mode file: " << std::endl; |
|
std::cerr << modelFile << std::endl; |
|
exit(-1); |
|
} |
|
|
|
//! [Initialize network] |
|
dnn::Net net; |
|
importer->populateNet(net); |
|
importer.release(); //We don't need importer anymore |
|
//! [Initialize network] |
|
|
|
//! [Prepare blob] |
|
Mat img = imread(imageFile), input; |
|
if (img.empty()) |
|
{ |
|
std::cerr << "Can't read image from the file: " << imageFile << std::endl; |
|
exit(-1); |
|
} |
|
|
|
cv::Size inputImgSize = cv::Size(512, 512); |
|
|
|
if (inputImgSize != img.size()) |
|
resize(img, img, inputImgSize); //Resize image to input size |
|
|
|
if(img.channels() == 3) |
|
cv::cvtColor(img, input, cv::COLOR_BGR2RGB); |
|
|
|
input.convertTo(input, CV_32F, 1/255.0); |
|
|
|
dnn::Blob inputBlob = dnn::Blob::fromImages(input); //Convert Mat to dnn::Blob image batch |
|
//! [Prepare blob] |
|
|
|
//! [Set input blob] |
|
net.setBlob("", inputBlob); //set the network input |
|
//! [Set input blob] |
|
|
|
cv::TickMeter tm; |
|
tm.start(); |
|
|
|
//! [Make forward pass] |
|
net.forward(); //compute output |
|
//! [Make forward pass] |
|
|
|
tm.stop(); |
|
|
|
//! [Gather output] |
|
|
|
dnn::Blob prob = net.getBlob(net.getLayerNames().back()); //gather output of "prob" layer |
|
|
|
Mat& result = prob.matRef(); |
|
|
|
BlobShape shape = prob.shape(); |
|
|
|
if (!resultFile.empty()) { |
|
CV_Assert(result.isContinuous()); |
|
|
|
ofstream fout(resultFile.c_str(), ios::out | ios::binary); |
|
fout.write((char*)result.data, result.total() * sizeof(float)); |
|
fout.close(); |
|
} |
|
|
|
std::cout << "Output blob shape " << shape << std::endl; |
|
std::cout << "Inference time, ms: " << tm.getTimeMilli() << std::endl; |
|
|
|
if (parser.has("show")) |
|
{ |
|
std::vector<String> classNames; |
|
if(!classNamesFile.empty()) { |
|
classNames = readClassNames(classNamesFile.c_str()); |
|
if (classNames.size() > prob.channels()) |
|
classNames = std::vector<String>(classNames.begin() + classNames.size() - prob.channels(), |
|
classNames.end()); |
|
} |
|
Mat segm, legend; |
|
colorizeSegmentation(prob, segm, legend, classNames); |
|
|
|
Mat show; |
|
addWeighted(img, 0.2, segm, 0.8, 0.0, show); |
|
|
|
imshow("Result", show); |
|
if(classNames.size()) |
|
imshow("Legend", legend); |
|
waitKey(); |
|
} |
|
|
|
return 0; |
|
} //main |
|
|
|
|
|
std::vector<String> readClassNames(const char *filename) |
|
{ |
|
std::vector<String> classNames; |
|
|
|
std::ifstream fp(filename); |
|
if (!fp.is_open()) |
|
{ |
|
std::cerr << "File with classes labels not found: " << filename << std::endl; |
|
exit(-1); |
|
} |
|
|
|
std::string name; |
|
while (!fp.eof()) |
|
{ |
|
std::getline(fp, name); |
|
if (name.length()) |
|
classNames.push_back(name); |
|
} |
|
|
|
fp.close(); |
|
return classNames; |
|
} |
|
|
|
static void colorizeSegmentation(Blob &score, Mat &segm, Mat &legend, vector<String> &classNames) |
|
{ |
|
const int rows = score.rows(); |
|
const int cols = score.cols(); |
|
const int chns = score.channels(); |
|
|
|
vector<Vec3i> colors; |
|
RNG rng(12345678); |
|
|
|
cv::Mat maxCl(rows, cols, CV_8UC1); |
|
cv::Mat maxVal(rows, cols, CV_32FC1); |
|
for (int ch = 0; ch < chns; ch++) |
|
{ |
|
colors.push_back(Vec3i(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256))); |
|
for (int row = 0; row < rows; row++) |
|
{ |
|
const float *ptrScore = score.ptrf(0, ch, row); |
|
uchar *ptrMaxCl = maxCl.ptr<uchar>(row); |
|
float *ptrMaxVal = maxVal.ptr<float>(row); |
|
for (int col = 0; col < cols; col++) |
|
{ |
|
if (ptrScore[col] > ptrMaxVal[col]) |
|
{ |
|
ptrMaxVal[col] = ptrScore[col]; |
|
ptrMaxCl[col] = ch; |
|
} |
|
} |
|
} |
|
} |
|
|
|
segm.create(rows, cols, CV_8UC3); |
|
for (int row = 0; row < rows; row++) |
|
{ |
|
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row); |
|
cv::Vec3b *ptrSegm = segm.ptr<cv::Vec3b>(row); |
|
for (int col = 0; col < cols; col++) |
|
{ |
|
ptrSegm[col] = colors[ptrMaxCl[col]]; |
|
} |
|
} |
|
|
|
if (classNames.size() == colors.size()) |
|
{ |
|
int blockHeight = 30; |
|
legend.create(blockHeight*classNames.size(), 200, CV_8UC3); |
|
for(int i = 0; i < classNames.size(); i++) |
|
{ |
|
cv::Mat block = legend.rowRange(i*blockHeight, (i+1)*blockHeight); |
|
block = colors[i]; |
|
putText(block, classNames[i], Point(0, blockHeight/2), FONT_HERSHEY_SIMPLEX, 0.5, Scalar()); |
|
} |
|
} |
|
}
|
|
|