Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

506 lines
15 KiB

#include <opencv2/opencv.hpp>
#include <opencv2/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/sfm.hpp>
#include <opencv2/viz.hpp>
#include <iostream>
#include <vector>
#include "sba.h"
using namespace cv;
class Vslam
{
public:
Vslam(Mat camera_matrix, Mat dist_coeffs);
bool initMap(const Mat& img1, const Mat& img2);
bool tracking(const Mat& img1, const Mat& img2);
void localMapping();
protected:
void detectFeatures(const Mat& img, std::vector<KeyPoint>& features, Mat& descriptors);
bool matchFeatures(const Mat& descriptor1, const Mat& descriptor2,
std::vector<DMatch>& matches,
std::vector<int>& matched_ind1, std::vector<int>& matched_ind2,
std::vector<int>& unmatched_ind1, std::vector<int>& unmatched_ind2);
double computeScore(const Mat &M,
const std::vector<Point2f>& points1,
const std::vector<Point2f>& points2,
const double T_M, size_t num_iter);
Mat chooseModel(const std::vector<Point2f>& points1, const std::vector<Point2f>& points2);
bool RTFromHomography(const Mat& H,
const std::vector<Point2f>& points1, const std::vector<Point2f>& points2,
std::vector<Mat>& rotations, std::vector<Mat>& translations);
bool RTFromFundamental(const Mat& F,
const std::vector<Point2f>& points1, const std::vector<Point2f>& points2,
std::vector<Mat>& rotations, std::vector<Mat>& translations);
int motionChooseSolution(const std::vector<Point2f>& points1, const std::vector<Point2f>& points2,
const std::vector<Mat>& rotations, const std::vector<Mat>& translations,
std::vector<Point3f>& points_3f);
void visualizeStructureAndMotion(const std::vector<Point3f>& points_3f,
const std::vector<Mat>& rotations,
const std::vector<Mat>& translations) const;
private:
Mat camera_matrix, dist_coeffs;
enum tForm { HOMOGRAPHY, FUNDAMENTAL } t_form;
bool is_map_init = false;
size_t frames_number = 0;
std::vector<KeyPoint> prev_features, curr_features;
std::vector<std::vector<KeyPoint> > unmatched_features;
std::vector<Mat> unmatched_descriptors;
Mat prev_descriptors, curr_descriptors;
std::vector<Mat> R, t;
std::vector<std::vector<Point3f> > point_3f_frame;
};
Vslam::Vslam(Mat camera_matrix_, Mat dist_coeffs_)
{
camera_matrix = camera_matrix_.clone();
dist_coeffs = dist_coeffs_.clone();
}
bool Vslam::initMap(const Mat& img1, const Mat& img2)
{
if ((!is_map_init) &&
(!img1.empty()) &&
(!img2.empty()))
{
std::vector<KeyPoint> prev_features_tmp, curr_features_tmp;
Mat prev_descriptors_tmp, curr_descriptors_tmp;
detectFeatures(img1, prev_features_tmp, prev_descriptors_tmp);
detectFeatures(img2, curr_features_tmp, curr_descriptors_tmp);
std::vector<DMatch> matches;
std::vector<int> matched_ind1, matched_ind2, unmatched_ind1, unmatched_ind2;
if (!matchFeatures(prev_descriptors_tmp, curr_descriptors_tmp, matches,
matched_ind1, matched_ind2,
unmatched_ind1, unmatched_ind2))
{
std::cout << "Not enough matches for initialization" << std::endl;
return false;
}
prev_features.resize(matches.size());
curr_features.resize(matches.size());
std::vector<Point2f> points1(matches.size());
std::vector<Point2f> points2(matches.size());
Mat descriptors2(Size(32, matches.size()), CV_8U);
for (size_t i = 0; i < matched_ind1.size(); i++)
{
int i1 = matched_ind1[i];
int i2 = matched_ind2[i];
prev_features[i] = prev_features_tmp[i1];
curr_features[i] = curr_features_tmp[i2];
curr_descriptors_tmp.row(i2).copyTo(descriptors2.row(i));
points1[i] = prev_features[i].pt;
points2[i] = curr_features[i].pt;
}
curr_descriptors = descriptors2.clone();
/*
unmatched_features.resize(2);
unmatched_descriptors.resize(2);
Mat descriptors1_tmp(Size(32, unmatched_ind1.size()), CV_8U);
Mat descriptors2_tmp(Size(32, unmatched_ind2.size()), CV_8U);
for (size_t i = 0; i < unmatched_ind1.size(); i++)
{
int i1 = unmatched_ind1[i];
int i2 = unmatched_ind2[i];
unmatched_features[0].push_back(prev_features_tmp[i1]);
unmatched_features[1].push_back(prev_features_tmp[i2]);
prev_descriptors_tmp.row(i1).copyTo(descriptors1_tmp.row(i));
curr_descriptors_tmp.row(i2).copyTo(descriptors2_tmp.row(i));
}
unmatched_descriptors[0] = descriptors1_tmp.clone();
unmatched_descriptors[1] = descriptors2_tmp.clone();
*/
Mat tform = chooseModel(points1, points2);
std::cout << "t_form is " << t_form << std::endl;
std::vector<Mat> rotations, translations;
if (t_form == HOMOGRAPHY)
RTFromHomography(tform, points1, points2, rotations, translations);
else
RTFromFundamental(tform, points1, points2, rotations, translations);
std::vector<Point3f> points_3f;
int solution = motionChooseSolution(points1, points2, rotations, translations, points_3f);
R.push_back(rotations[solution]);
t.push_back(translations[solution]);
visualizeStructureAndMotion(points_3f, R, t);
point_3f_frame.push_back(points_3f);
frames_number += 2;
is_map_init = true;
return true;
}
else if (is_map_init)
{
std::cout << "Map is already init" << std::endl;
return false;
}
else
{
std::cout << "Need two images to start initialization" << std::endl;
return false;
}
}
bool Vslam::tracking(const Mat& img1, const Mat& img2)
{
if ((is_map_init) && (!img2.empty()))
{
std::vector<KeyPoint> prev_features_tmp = curr_features;
prev_descriptors = curr_descriptors.clone();
std::vector<KeyPoint> curr_features_tmp;
Mat curr_descriptors_tmp;
detectFeatures(img2, curr_features_tmp, curr_descriptors_tmp);
std::vector<DMatch> matches;
std::vector<int> matched_ind1, matched_ind2, unmatched_ind1, unmatched_ind2;
if (!matchFeatures(prev_descriptors, curr_descriptors_tmp, matches,
matched_ind1, matched_ind2, unmatched_ind1, unmatched_ind2))
{
return false;
}
//drawing
Mat imMatches;
drawMatches(img1, prev_features_tmp, img2, curr_features_tmp, matches, imMatches);
imshow("matches2", imMatches);
waitKey();
prev_features.resize(matches.size());
curr_features.resize(matches.size());
std::vector<Point2f> points1(matches.size());
std::vector<Point2f> points2(matches.size());
Mat descriptors2(Size(32, matches.size()), CV_8U);
for (size_t m = 0; m < matches.size(); m++)
{
int i1 = matches[m].queryIdx;
int i2 = matches[m].trainIdx;
prev_features[m] = prev_features_tmp[i1];
curr_features[m] = curr_features_tmp[i1];
curr_descriptors_tmp.row(i2).copyTo(descriptors2.row(m));
points1[m] = prev_features[m].pt;
points2[m] = curr_features[m].pt;
}
curr_descriptors = descriptors2.clone();
Mat rvec(Mat::zeros(3, 1, CV_64F));
Mat tvec(Mat::zeros(3, 1, CV_64F));
solvePnPRansac(point_3f_frame[frames_number - 1], points2, camera_matrix, dist_coeffs, rvec, tvec);
Mat rmatrix;
Rodrigues(rvec, rmatrix);
R.push_back(rmatrix);
t.push_back(tvec);
frames_number++;
return true;
}
else if (!is_map_init)
{
std::cout << "Map is not init" << std::endl;
return false;
}
else if (img2.empty())
{
std::cout << "Empty input image" << std::endl;
return false;
}
}
void Vslam::localMapping()
{
}
void Vslam::detectFeatures(const Mat& img, std::vector<KeyPoint>& features, Mat& descriptors)
{
Mat img_gray;
cvtColor(img, img_gray, cv::COLOR_BGR2GRAY);
int max_features = 2000;
Ptr<Feature2D> orb = ORB::create(max_features);
orb->detectAndCompute(img_gray, Mat(), features, descriptors);
}
bool Vslam::matchFeatures(const Mat& descriptor1, const Mat& descriptor2,
std::vector<DMatch>& matches,
std::vector<int>& matched_ind1, std::vector<int>& matched_ind2,
std::vector<int>& unmatched_ind1, std::vector<int>& unmatched_ind2)
{
float good_match_percent = 0.1;
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
matcher->match(descriptor1, descriptor2, matches, Mat());
std::sort(matches.begin(), matches.end(),
[](DMatch a, DMatch b) { return a.distance > b.distance; });
std::cout << matches.size() << std::endl;
const int num_good_matches = matches.size() * good_match_percent;
matched_ind1.resize(num_good_matches);
matched_ind2.resize(num_good_matches);
unmatched_ind1.resize(matches.size() - num_good_matches);
unmatched_ind1.resize(matches.size() - num_good_matches);
for (size_t m = 0; m < num_good_matches; m++)
{
matched_ind1[m] = matches[m].queryIdx;
matched_ind2[m] = matches[m].trainIdx;
}
/*
for (size_t m = num_good_matches; m < matches.size(); m++)
{
unmatched_ind1[m - num_good_matches] = matches[m].queryIdx;
unmatched_ind2[m - num_good_matches] = matches[m].trainIdx;
}
*/
/*
const int min_matches_num = 100;
if (num_good_matches < min_matches_num)
{
matches.clear();
return false;
}
else
{
matches.erase(matches.begin() + num_good_matches, matches.end());
return true;
}
*/
matches.erase(matches.begin() + num_good_matches, matches.end());
return true;
}
//S = summ(p_M(d^2(m1, M^(-1) * m2) + p_M(d^2(m2, M * m1))))
//p_M(d^2) = 5.99 - d^2 if d^2 < 5.99
//else p_M(d^2) = 0
double Vslam::computeScore(const Mat &M,
const std::vector<Point2f>& points1,
const std::vector<Point2f>& points2,
const double T_M, size_t num_iter)
{
Mat M_inv = M.inv();
Mat m2(3, num_iter, CV_64F);
if (points2.size() < num_iter)
num_iter = points2.size();
for (int i = 0; i < num_iter; i++)
{
m2.at<double>(0, i) = points2[i].x;
m2.at<double>(1, i) = points2[i].y;
m2.at<double>(2, i) = 1;
}
Mat M_inv_m2_mat = M_inv * m2;
std::vector<Point2f> M_inv_m2;
std::vector<double> dist1;
for (int i = 0; i < num_iter; i++)
{
M_inv_m2.push_back(Point2f(M_inv_m2_mat.at<double>(0, i) / M_inv_m2_mat.at<double>(2, i),
M_inv_m2_mat.at<double>(1, i) / M_inv_m2_mat.at<double>(2, i)));
dist1.push_back((M_inv_m2[i].x - points1[i].x) * (M_inv_m2[i].x - points1[i].x) +
(M_inv_m2[i].y - points1[i].y) * (M_inv_m2[i].y - points1[i].y));
}
//TODO: use convertPointsToHomogeneous() and convertPointsFromHomogeneous()
Mat m1(3, num_iter, CV_64FC1);
for (int i = 0; i < num_iter; i++)
{
m1.at<double>(0, i) = points1[i].x;
m1.at<double>(1, i) = points1[i].y;
m1.at<double>(2, i) = 0;
}
Mat M_m1_mat = M * m1;
std::vector<Point2f> M_m1;
std::vector<double> dist2;
double S_M = 0;
for (int i = 0; i < num_iter; i++)
{
M_m1.push_back(Point2f(M_m1_mat.at<double>(0, i) / M_m1_mat.at<double>(2, i),
M_m1_mat.at<double>(1, i) / M_m1_mat.at<double>(2, i)));
dist2.push_back((M_m1[i].x - points2[i].x) * (M_m1[i].x - points2[i].x) +
(M_m1[i].y - points2[i].y) * (M_m1[i].y - points2[i].y));
}
double T_H = 5.99;
for (int i = 0; i < num_iter; i++)
{
if (dist1[i] < T_M)
S_M += T_H - dist1[i];
if (dist2[i] < T_M)
S_M += T_H - dist2[i];
}
std::cout << "S_M = " << S_M << std::endl;
return S_M;
}
Mat Vslam::chooseModel(const std::vector<Point2f>& points1, const std::vector<Point2f>& points2)
{
std::vector<uchar> mask;
Mat h = findHomography(points1, points2, mask, RANSAC, 5.99);
Mat f(3, 3, CV_64FC1);
f = findFundamentalMat(points1, points2, FM_RANSAC, 3.84);
double score_f = 0.0, score_h = 0.0, R_h;
if(!f.empty())
score_f = computeScore(f, points1, points2, 3.84, 8);
if(!h.empty())
score_h = computeScore(h, points1, points2, 5.99, 4);
std::cout << "score_f is " << score_f << std::endl;
std::cout << "score_h is " << score_h << std::endl;
R_h = score_h / (score_h + score_f);
if (R_h > 0.45)
{
t_form = HOMOGRAPHY;
return h;
}
else
{
t_form = FUNDAMENTAL;
return f;
}
}
bool Vslam::RTFromHomography(const Mat& H,
const std::vector<Point2f>& points1, const std::vector<Point2f>& points2,
std::vector<Mat>& rotations, std::vector<Mat>& translations)
{
std::vector<Mat> normals;
int solutions = decomposeHomographyMat(H, camera_matrix, rotations, translations, normals);
if (solutions == 0)
return false;
return true;
}
bool Vslam::RTFromFundamental(const Mat& F,
const std::vector<Point2f>& points1, const std::vector<Point2f>& points2,
std::vector<Mat>& rotations, std::vector<Mat>& translations)
{
Mat E = (F.t().mul(camera_matrix)).mul(F);
Mat rotation1, rotation2;
Mat mat_translations;
decomposeEssentialMat(E, rotation1, rotation2, mat_translations);
rotations.resize(4);
rotations[0] = rotation1;
rotations[1] = rotation1;
rotations[2] = rotation2;
rotations[3] = rotation2;
Mat neg_mat_translation(3, 1, CV_64F);
for(int i = 0; i < 3; i++)
neg_mat_translation.at<double>(i, 0) = -mat_translations.at<double>(i, 0);
translations.resize(4);
translations[0] = mat_translations;
translations[1] = neg_mat_translation;
translations[2] = mat_translations;
translations[3] = neg_mat_translation;
return true;
}
int Vslam::motionChooseSolution(const std::vector<Point2f>& points1, const std::vector<Point2f>& points2,
const std::vector<Mat>& rotations, const std::vector<Mat>& translations,
std::vector<Point3f>& points_3f)
{
std::vector<std::vector<Point3f> > points_3f_tmp(rotations.size());
std::vector<int> count_visible_points(rotations.size());
for (size_t i = 0; i < rotations.size(); i++)
{
Mat rotation_translation1, rotation_translation2;
Mat identity_mat = Mat::eye(rotations[i].size(), CV_64F);
Mat z = Mat::zeros(translations[i].size(), CV_64F);
hconcat(identity_mat, z, rotation_translation1);
Mat projection1 = camera_matrix * rotation_translation1;
hconcat(rotations[i], translations[i], rotation_translation2);
Mat projection2 = camera_matrix * rotation_translation2;
Mat points_4f;
triangulatePoints(projection1, projection2, points1, points2, points_4f);
for (size_t k = 0; k < points_4f.cols; k++)
{
Mat X(3, 1, CV_32F);
X.at<float>(0, 0) = points_4f.at<float>(0, k) / points_4f.at<float>(3, k);
X.at<float>(1, 0) = points_4f.at<float>(1, k) / points_4f.at<float>(3, k);
X.at<float>(2, 0) = points_4f.at<float>(2, k) / points_4f.at<float>(3, k);
points_3f_tmp[i].push_back(Point3f(X.at<float>(0, 0),
X.at<float>(1, 0),
X.at<float>(2, 0)));
double d1 = sfm::depth(identity_mat, z, X);
double d2 = sfm::depth(rotations[i], translations[i], X);
// Test if point is front to the two cameras.
if (d1 > 0 && d2 > 0)
{
count_visible_points[i]++;
}
}
}
int solution_ind = std::distance(count_visible_points.begin(),
std::max_element(count_visible_points.begin(), count_visible_points.end()));
points_3f = points_3f_tmp[solution_ind];
return solution_ind;
}
void Vslam::visualizeStructureAndMotion(const std::vector<Point3f>& points_3f,
const std::vector<Mat>& rotations,
const std::vector<Mat>& translations) const
{
std::vector<Affine3f> cam_poses(rotations.size());
for(size_t i = 0; i < rotations.size(); i++)
cam_poses[i] = Affine3d(rotations[i], translations[i]);
viz::Viz3d window;
viz::WCloud cloud_wid(points_3f, viz::Color::green());
cloud_wid.setRenderingProperty(cv::viz::POINT_SIZE, 2);
window.showWidget("cameras_frames_and_lines", viz::WTrajectory(cam_poses, viz::WTrajectory::BOTH, 0.1, viz::Color::green()));
window.showWidget("points", cloud_wid);
window.setViewerPose(cam_poses.back());
window.spin();
}