You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
470 lines
23 KiB
470 lines
23 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Tencent is pleased to support the open source community by making WeChat QRCode available. |
|
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. |
|
|
|
#include "test_precomp.hpp" |
|
#include "opencv2/objdetect.hpp" |
|
|
|
namespace opencv_test { |
|
namespace { |
|
std::string qrcode_images_name[] = { |
|
"version_1_down.jpg", /*"version_1_left.jpg", "version_1_right.jpg", "version_1_up.jpg",*/ |
|
"version_1_top.jpg", |
|
/*"version_2_down.jpg",*/ "version_2_left.jpg", /*"version_2_right.jpg",*/ |
|
"version_2_up.jpg", |
|
"version_2_top.jpg", |
|
"version_3_down.jpg", |
|
"version_3_left.jpg", |
|
/*"version_3_right.jpg",*/ "version_3_up.jpg", |
|
"version_3_top.jpg", |
|
"version_4_down.jpg", |
|
"version_4_left.jpg", |
|
/*"version_4_right.jpg",*/ "version_4_up.jpg", |
|
"version_4_top.jpg", |
|
"version_5_down.jpg", |
|
"version_5_left.jpg", |
|
/*"version_5_right.jpg",*/ "version_5_up.jpg", |
|
"version_5_top.jpg", |
|
"russian.jpg", |
|
"kanji.jpg", /*"link_github_ocv.jpg",*/ |
|
"link_ocv.jpg", |
|
"link_wiki_cv.jpg"}; |
|
|
|
std::string qrcode_images_close[] = {/*"close_1.png",*/ "close_2.png", "close_3.png", "close_4.png", |
|
"close_5.png"}; |
|
std::string qrcode_images_monitor[] = {"monitor_1.png", "monitor_2.png", "monitor_3.png", |
|
"monitor_4.png", "monitor_5.png"}; |
|
std::string qrcode_images_curved[] = {"curved_1.jpg", /*"curved_2.jpg", "curved_3.jpg", |
|
"curved_4.jpg",*/ |
|
"curved_5.jpg", "curved_6.jpg", |
|
/*"curved_7.jpg", "curved_8.jpg"*/}; |
|
std::string qrcode_images_multiple[] = {/*"2_qrcodes.png",*/ "3_close_qrcodes.png", /*"3_qrcodes.png", |
|
"4_qrcodes.png", "5_qrcodes.png", "6_qrcodes.png",*/ |
|
"7_qrcodes.png"/*, "8_close_qrcodes.png"*/}; |
|
|
|
typedef testing::TestWithParam<std::string> Objdetect_QRCode; |
|
TEST_P(Objdetect_QRCode, regression) { |
|
const std::string name_current_image = GetParam(); |
|
const std::string root = "qrcode/"; |
|
|
|
std::string image_path = findDataFile(root + name_current_image); |
|
Mat src = imread(image_path, IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; |
|
|
|
vector<Mat> points; |
|
// can not find the model file |
|
// so we temporarily comment it out |
|
// auto detector = wechat_qrcode::WeChatQRCode( |
|
// findDataFile("detect.prototxt", false), findDataFile("detect.caffemodel", false), |
|
// findDataFile("sr.prototxt", false), findDataFile("sr.caffemodel", false)); |
|
auto detector = wechat_qrcode::WeChatQRCode(); |
|
auto decoded_info = detector.detectAndDecode(src, points); |
|
|
|
const std::string dataset_config = findDataFile(root + "dataset_config.json"); |
|
FileStorage file_config(dataset_config, FileStorage::READ); |
|
ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config; |
|
{ |
|
FileNode images_list = file_config["test_images"]; |
|
size_t images_count = static_cast<size_t>(images_list.size()); |
|
ASSERT_GT(images_count, 0u) |
|
<< "Can't find validation data entries in 'test_images': " << dataset_config; |
|
|
|
for (size_t index = 0; index < images_count; index++) { |
|
FileNode config = images_list[(int)index]; |
|
std::string name_test_image = config["image_name"]; |
|
if (name_test_image == name_current_image) { |
|
std::string original_info = config["info"]; |
|
string decoded_str; |
|
if (decoded_info.size()) { |
|
decoded_str = decoded_info[0]; |
|
} |
|
EXPECT_EQ(decoded_str, original_info); |
|
return; // done |
|
} |
|
} |
|
std::cerr << "Not found results for '" << name_current_image |
|
<< "' image in config file:" << dataset_config << std::endl |
|
<< "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data." |
|
<< std::endl; |
|
} |
|
} |
|
|
|
typedef testing::TestWithParam<std::string> Objdetect_QRCode_Close; |
|
TEST_P(Objdetect_QRCode_Close, regression) { |
|
const std::string name_current_image = GetParam(); |
|
const std::string root = "qrcode/close/"; |
|
|
|
std::string image_path = findDataFile(root + name_current_image); |
|
Mat src = imread(image_path, IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; |
|
|
|
vector<Mat> points; |
|
// can not find the model file |
|
// so we temporarily comment it out |
|
// auto detector = wechat_qrcode::WeChatQRCode( |
|
// findDataFile("detect.prototxt", false), findDataFile("detect.caffemodel", false), |
|
// findDataFile("sr.prototxt", false), findDataFile("sr.caffemodel", false)); |
|
auto detector = wechat_qrcode::WeChatQRCode(); |
|
auto decoded_info = detector.detectAndDecode(src, points); |
|
|
|
const std::string dataset_config = findDataFile(root + "dataset_config.json"); |
|
FileStorage file_config(dataset_config, FileStorage::READ); |
|
ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config; |
|
{ |
|
FileNode images_list = file_config["close_images"]; |
|
size_t images_count = static_cast<size_t>(images_list.size()); |
|
ASSERT_GT(images_count, 0u) |
|
<< "Can't find validation data entries in 'close_images': " << dataset_config; |
|
|
|
for (size_t index = 0; index < images_count; index++) { |
|
FileNode config = images_list[(int)index]; |
|
std::string name_test_image = config["image_name"]; |
|
if (name_test_image == name_current_image) { |
|
std::string original_info = config["info"]; |
|
string decoded_str; |
|
if (decoded_info.size()) { |
|
decoded_str = decoded_info[0]; |
|
} |
|
EXPECT_EQ(decoded_str, original_info); |
|
return; // done |
|
} |
|
} |
|
std::cerr << "Not found results for '" << name_current_image |
|
<< "' image in config file:" << dataset_config << std::endl |
|
<< "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data." |
|
<< std::endl; |
|
} |
|
} |
|
|
|
typedef testing::TestWithParam<std::string> Objdetect_QRCode_Monitor; |
|
TEST_P(Objdetect_QRCode_Monitor, regression) { |
|
const std::string name_current_image = GetParam(); |
|
const std::string root = "qrcode/monitor/"; |
|
|
|
std::string image_path = findDataFile(root + name_current_image); |
|
Mat src = imread(image_path, IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; |
|
|
|
vector<Mat> points; |
|
// can not find the model file |
|
// so we temporarily comment it out |
|
// auto detector = wechat_qrcode::WeChatQRCode( |
|
// findDataFile("detect.prototxt", false), findDataFile("detect.caffemodel", false), |
|
// findDataFile("sr.prototxt", false), findDataFile("sr.caffemodel", false)); |
|
auto detector = wechat_qrcode::WeChatQRCode(); |
|
auto decoded_info = detector.detectAndDecode(src, points); |
|
|
|
const std::string dataset_config = findDataFile(root + "dataset_config.json"); |
|
FileStorage file_config(dataset_config, FileStorage::READ); |
|
ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config; |
|
{ |
|
FileNode images_list = file_config["monitor_images"]; |
|
size_t images_count = static_cast<size_t>(images_list.size()); |
|
ASSERT_GT(images_count, 0u) |
|
<< "Can't find validation data entries in 'monitor_images': " << dataset_config; |
|
|
|
for (size_t index = 0; index < images_count; index++) { |
|
FileNode config = images_list[(int)index]; |
|
std::string name_test_image = config["image_name"]; |
|
if (name_test_image == name_current_image) { |
|
std::string original_info = config["info"]; |
|
string decoded_str; |
|
if (decoded_info.size()) { |
|
decoded_str = decoded_info[0]; |
|
} |
|
EXPECT_EQ(decoded_str, original_info); |
|
return; // done |
|
} |
|
} |
|
std::cerr << "Not found results for '" << name_current_image |
|
<< "' image in config file:" << dataset_config << std::endl |
|
<< "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data." |
|
<< std::endl; |
|
} |
|
} |
|
|
|
typedef testing::TestWithParam<std::string> Objdetect_QRCode_Curved; |
|
TEST_P(Objdetect_QRCode_Curved, regression) { |
|
const std::string name_current_image = GetParam(); |
|
const std::string root = "qrcode/curved/"; |
|
|
|
std::string image_path = findDataFile(root + name_current_image); |
|
Mat src = imread(image_path, IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; |
|
|
|
vector<Mat> points; |
|
// can not find the model file |
|
// so we temporarily comment it out |
|
// auto detector = wechat_qrcode::WeChatQRCode( |
|
// findDataFile("detect.prototxt", false), findDataFile("detect.caffemodel", false), |
|
// findDataFile("sr.prototxt", false), findDataFile("sr.caffemodel", false)); |
|
auto detector = wechat_qrcode::WeChatQRCode(); |
|
auto decoded_info = detector.detectAndDecode(src, points); |
|
|
|
const std::string dataset_config = findDataFile(root + "dataset_config.json"); |
|
FileStorage file_config(dataset_config, FileStorage::READ); |
|
ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config; |
|
{ |
|
FileNode images_list = file_config["test_images"]; |
|
size_t images_count = static_cast<size_t>(images_list.size()); |
|
ASSERT_GT(images_count, 0u) |
|
<< "Can't find validation data entries in 'test_images': " << dataset_config; |
|
|
|
for (size_t index = 0; index < images_count; index++) { |
|
FileNode config = images_list[(int)index]; |
|
std::string name_test_image = config["image_name"]; |
|
if (name_test_image == name_current_image) { |
|
std::string original_info = config["info"]; |
|
string decoded_str; |
|
if (decoded_info.size()) { |
|
decoded_str = decoded_info[0]; |
|
} |
|
EXPECT_EQ(decoded_str, original_info); |
|
return; // done |
|
} |
|
} |
|
std::cerr << "Not found results for '" << name_current_image |
|
<< "' image in config file:" << dataset_config << std::endl |
|
<< "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data." |
|
<< std::endl; |
|
} |
|
} |
|
|
|
typedef testing::TestWithParam<std::string> Objdetect_QRCode_Multi; |
|
TEST_P(Objdetect_QRCode_Multi, regression) { |
|
const std::string name_current_image = GetParam(); |
|
const std::string root = "qrcode/multiple/"; |
|
string path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel; |
|
string model_version = "_2021-01"; |
|
path_detect_prototxt = findDataFile("dnn/wechat"+model_version+"/detect.prototxt", false); |
|
path_detect_caffemodel = findDataFile("dnn/wechat"+model_version+"/detect.caffemodel", false); |
|
path_sr_prototxt = findDataFile("dnn/wechat"+model_version+"/sr.prototxt", false); |
|
path_sr_caffemodel = findDataFile("dnn/wechat"+model_version+"/sr.caffemodel", false); |
|
|
|
std::string image_path = findDataFile(root + name_current_image); |
|
Mat src = imread(image_path); |
|
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; |
|
|
|
vector<Mat> points; |
|
auto detector = wechat_qrcode::WeChatQRCode(path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, |
|
path_sr_caffemodel); |
|
vector<string> decoded_info = detector.detectAndDecode(src, points); |
|
|
|
const std::string dataset_config = findDataFile(root + "dataset_config.json"); |
|
FileStorage file_config(dataset_config, FileStorage::READ); |
|
ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config; |
|
{ |
|
FileNode images_list = file_config["multiple_images"]; |
|
size_t images_count = static_cast<size_t>(images_list.size()); |
|
ASSERT_GT(images_count, 0u) |
|
<< "Can't find validation data entries in 'test_images': " << dataset_config; |
|
for (size_t index = 0; index < images_count; index++) { |
|
FileNode config = images_list[(int)index]; |
|
std::string name_test_image = config["image_name"]; |
|
if (name_test_image == name_current_image) { |
|
size_t count_eq_info = 0; |
|
for (int i = 0; i < int(decoded_info.size()); i++) { |
|
for (int j = 0; j < int(config["info"].size()); j++) { |
|
std::string original_info = config["info"][j]; |
|
if (original_info == decoded_info[i]) { |
|
count_eq_info++; |
|
break; |
|
} |
|
} |
|
} |
|
EXPECT_EQ(config["info"].size(), count_eq_info); |
|
return; // done |
|
} |
|
} |
|
std::cerr << "Not found results for '" << name_current_image |
|
<< "' image in config file:" << dataset_config << std::endl |
|
<< "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data." |
|
<< std::endl; |
|
} |
|
} |
|
|
|
TEST(Objdetect_QRCode_points_position, rotate45) { |
|
string path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel; |
|
string model_version = "_2021-01"; |
|
path_detect_prototxt = findDataFile("dnn/wechat"+model_version+"/detect.prototxt", false); |
|
path_detect_caffemodel = findDataFile("dnn/wechat"+model_version+"/detect.caffemodel", false); |
|
path_sr_prototxt = findDataFile("dnn/wechat"+model_version+"/sr.prototxt", false); |
|
path_sr_caffemodel = findDataFile("dnn/wechat"+model_version+"/sr.caffemodel", false); |
|
|
|
auto detector = wechat_qrcode::WeChatQRCode(path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, |
|
path_sr_caffemodel); |
|
|
|
const cv::String expect_msg = "OpenCV"; |
|
QRCodeEncoder::Params params; |
|
params.version = 5; // 37x37 |
|
Ptr<QRCodeEncoder> qrcode_enc = cv::QRCodeEncoder::create(params); |
|
Mat qrImage; |
|
qrcode_enc->encode(expect_msg, qrImage); |
|
Mat image(800, 800, CV_8UC1, Scalar(0)); |
|
const int pixInBlob = 4; |
|
Size qrSize = Size((21+(params.version-1)*4)*pixInBlob,(21+(params.version-1)*4)*pixInBlob); |
|
Rect2f rec(static_cast<float>((image.cols - qrSize.width)/2), |
|
static_cast<float>((image.rows - qrSize.height)/2), |
|
static_cast<float>(qrSize.width), |
|
static_cast<float>(qrSize.height)); |
|
vector<float> goldCorners = {rec.x, rec.y, |
|
rec.x+rec.width, rec.y, |
|
rec.x+rec.width, rec.y+rec.height, |
|
rec.x, rec.y+rec.height}; |
|
Mat roiImage = image(rec); |
|
cv::resize(qrImage, roiImage, qrSize, 1., 1., INTER_NEAREST); |
|
|
|
vector<Mat> points1; |
|
auto decoded_info1 = detector.detectAndDecode(image, points1); |
|
ASSERT_EQ(1ull, decoded_info1.size()); |
|
ASSERT_EQ(expect_msg, decoded_info1[0]); |
|
EXPECT_NEAR(0, cvtest::norm(Mat(goldCorners), points1[0].reshape(1, 8), NORM_INF), 8.); |
|
|
|
const double angle = 45; |
|
Point2f pc(image.cols/2.f, image.rows/2.f); |
|
Mat rot = getRotationMatrix2D(pc, angle, 1.); |
|
warpAffine(image, image, rot, image.size()); |
|
vector<float> rotateGoldCorners; |
|
for (int i = 0; i < static_cast<int>(goldCorners.size()); i+= 2) { |
|
rotateGoldCorners.push_back(static_cast<float>(rot.at<double>(0, 0) * goldCorners[i] + |
|
rot.at<double>(0, 1) * goldCorners[i+1] + rot.at<double>(0, 2))); |
|
rotateGoldCorners.push_back(static_cast<float>(rot.at<double>(1, 0) * goldCorners[i] + |
|
rot.at<double>(1, 1) * goldCorners[i+1] + rot.at<double>(1, 2))); |
|
} |
|
vector<Mat> points2; |
|
auto decoded_info2 = detector.detectAndDecode(image, points2); |
|
ASSERT_EQ(1ull, decoded_info2.size()); |
|
ASSERT_EQ(expect_msg, decoded_info2[0]); |
|
EXPECT_NEAR(0, cvtest::norm(Mat(rotateGoldCorners), points2[0].reshape(1, 8), NORM_INF), 11.); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode, testing::ValuesIn(qrcode_images_name)); |
|
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Close, testing::ValuesIn(qrcode_images_close)); |
|
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Monitor, testing::ValuesIn(qrcode_images_monitor)); |
|
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Curved, testing::ValuesIn(qrcode_images_curved)); |
|
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Multi, testing::ValuesIn(qrcode_images_multiple)); |
|
|
|
TEST(Objdetect_QRCode_Big, regression) { |
|
string path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel; |
|
string model_version = "_2021-01"; |
|
path_detect_prototxt = findDataFile("dnn/wechat"+model_version+"/detect.prototxt", false); |
|
path_detect_caffemodel = findDataFile("dnn/wechat"+model_version+"/detect.caffemodel", false); |
|
path_sr_prototxt = findDataFile("dnn/wechat"+model_version+"/sr.prototxt", false); |
|
path_sr_caffemodel = findDataFile("dnn/wechat"+model_version+"/sr.caffemodel", false); |
|
|
|
auto detector = wechat_qrcode::WeChatQRCode(path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, |
|
path_sr_caffemodel); |
|
|
|
const cv::String expect_msg = "OpenCV"; |
|
QRCodeEncoder::Params params; |
|
params.version = 4; // 33x33 |
|
Ptr<QRCodeEncoder> qrcode_enc = cv::QRCodeEncoder::create(params); |
|
Mat qrImage; |
|
qrcode_enc->encode(expect_msg, qrImage); |
|
Mat largeImage(4032, 3024, CV_8UC1, Scalar(0)); |
|
const int pixInBlob = 4; |
|
Size qrSize = Size((21+(params.version-1)*4)*pixInBlob,(21+(params.version-1)*4)*pixInBlob); |
|
Mat roiImage = largeImage(Rect((largeImage.cols - qrSize.width)/2, (largeImage.rows - qrSize.height)/2, |
|
qrSize.width, qrSize.height)); |
|
cv::resize(qrImage, roiImage, qrSize, 1., 1., INTER_NEAREST); |
|
|
|
vector<Mat> points; |
|
detector.setScaleFactor(0.25f); |
|
auto decoded_info = detector.detectAndDecode(largeImage, points); |
|
ASSERT_EQ(1ull, decoded_info.size()); |
|
ASSERT_EQ(expect_msg, decoded_info[0]); |
|
} |
|
|
|
TEST(Objdetect_QRCode_Tiny, regression) { |
|
string path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel; |
|
string model_version = "_2021-01"; |
|
path_detect_prototxt = findDataFile("dnn/wechat"+model_version+"/detect.prototxt", false); |
|
path_detect_caffemodel = findDataFile("dnn/wechat"+model_version+"/detect.caffemodel", false); |
|
path_sr_prototxt = findDataFile("dnn/wechat"+model_version+"/sr.prototxt", false); |
|
path_sr_caffemodel = findDataFile("dnn/wechat"+model_version+"/sr.caffemodel", false); |
|
|
|
auto detector = wechat_qrcode::WeChatQRCode(path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, |
|
path_sr_caffemodel); |
|
|
|
const cv::String expect_msg = "OpenCV"; |
|
QRCodeEncoder::Params params; |
|
params.version = 4; // 33x33 |
|
Ptr<QRCodeEncoder> qrcode_enc = cv::QRCodeEncoder::create(params); |
|
Mat qrImage; |
|
qrcode_enc->encode(expect_msg, qrImage); |
|
Mat tinyImage(80, 80, CV_8UC1, Scalar(0)); |
|
const int pixInBlob = 2; |
|
Size qrSize = Size((21+(params.version-1)*4)*pixInBlob,(21+(params.version-1)*4)*pixInBlob); |
|
Mat roiImage = tinyImage(Rect((tinyImage.cols - qrSize.width)/2, (tinyImage.rows - qrSize.height)/2, |
|
qrSize.width, qrSize.height)); |
|
cv::resize(qrImage, roiImage, qrSize, 1., 1., INTER_NEAREST); |
|
|
|
vector<Mat> points; |
|
auto decoded_info = detector.detectAndDecode(tinyImage, points); |
|
ASSERT_EQ(1ull, decoded_info.size()); |
|
ASSERT_EQ(expect_msg, decoded_info[0]); |
|
} |
|
|
|
|
|
typedef testing::TestWithParam<std::string> Objdetect_QRCode_Easy_Multi; |
|
TEST_P(Objdetect_QRCode_Easy_Multi, regression) { |
|
string path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel; |
|
string model_path = GetParam(); |
|
|
|
if (!model_path.empty()) { |
|
path_detect_prototxt = findDataFile(model_path + "/detect.prototxt", false); |
|
path_detect_caffemodel = findDataFile(model_path + "/detect.caffemodel", false); |
|
path_sr_prototxt = findDataFile(model_path + "/sr.prototxt", false); |
|
path_sr_caffemodel = findDataFile(model_path + "/sr.caffemodel", false); |
|
} |
|
|
|
auto detector = wechat_qrcode::WeChatQRCode(path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, |
|
path_sr_caffemodel); |
|
|
|
const cv::String expect_msg1 = "OpenCV1", expect_msg2 = "OpenCV2"; |
|
QRCodeEncoder::Params params; |
|
params.version = 4; // 33x33 |
|
Ptr<QRCodeEncoder> qrcode_enc = cv::QRCodeEncoder::create(params); |
|
Mat qrImage1, qrImage2; |
|
qrcode_enc->encode(expect_msg1, qrImage1); |
|
qrcode_enc->encode(expect_msg2, qrImage2); |
|
const int pixInBlob = 2; |
|
const int offset = 14; |
|
const int qr_size = (params.version - 1) * 4 + 21; |
|
Mat tinyImage = Mat::zeros(qr_size*pixInBlob+offset, (qr_size*pixInBlob+offset)*2, CV_8UC1); |
|
Size qrSize = Size(qrImage1.cols, qrImage1.rows); |
|
|
|
Mat roiImage = tinyImage(Rect((tinyImage.cols/2 - qrSize.width)/2, (tinyImage.rows - qrSize.height)/2, |
|
qrSize.width, qrSize.height)); |
|
cv::resize(qrImage1, roiImage, qrSize, 1., 1., INTER_NEAREST); |
|
|
|
roiImage = tinyImage(Rect((tinyImage.cols/2 - qrSize.width)/2+tinyImage.cols/2, (tinyImage.rows - qrSize.height)/2, |
|
qrSize.width, qrSize.height)); |
|
cv::resize(qrImage2, roiImage, qrSize, 1., 1., INTER_NEAREST); |
|
|
|
vector<Mat> points; |
|
auto decoded_info = detector.detectAndDecode(tinyImage, points); |
|
ASSERT_EQ(2ull, decoded_info.size()); |
|
ASSERT_TRUE((expect_msg1 == decoded_info[0] && expect_msg2 == decoded_info[1]) || |
|
(expect_msg1 == decoded_info[1] && expect_msg2 == decoded_info[0])); |
|
} |
|
|
|
std::string qrcode_model_path[] = {"", "dnn/wechat_2021-01"}; |
|
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Easy_Multi, testing::ValuesIn(qrcode_model_path)); |
|
|
|
TEST(Objdetect_QRCode_bug, issue_3478) { |
|
auto detector = wechat_qrcode::WeChatQRCode(); |
|
std::string image_path = findDataFile("qrcode/issue_3478.png"); |
|
Mat src = imread(image_path, IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; |
|
std::vector<std::string> outs = detector.detectAndDecode(src); |
|
ASSERT_EQ(1, (int) outs.size()); |
|
ASSERT_EQ(16, (int) outs[0].size()); |
|
ASSERT_EQ("KFCVW50 ", outs[0]); |
|
} |
|
|
|
} // namespace |
|
} // namespace opencv_test
|
|
|