Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

217 lines
7.8 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, Biagio Montesano, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
//using namespace cv;
namespace cv
{
namespace line_descriptor
{
Ptr<LSDDetector> LSDDetector::createLSDDetector()
{
return Ptr<LSDDetector>( new LSDDetector() );
}
/* compute Gaussian pyramid of input image */
void LSDDetector::computeGaussianPyramid( const Mat& image, int numOctaves, int scale )
{
/* clear class fields */
gaussianPyrs.clear();
/* insert input image into pyramid */
cv::Mat currentMat = image.clone();
//cv::GaussianBlur( currentMat, currentMat, cv::Size( 5, 5 ), 1 );
gaussianPyrs.push_back( currentMat );
/* fill Gaussian pyramid */
for ( int pyrCounter = 1; pyrCounter < numOctaves; pyrCounter++ )
{
/* compute and store next image in pyramid and its size */
pyrDown( currentMat, currentMat, Size( currentMat.cols / scale, currentMat.rows / scale ) );
gaussianPyrs.push_back( currentMat );
}
}
/* check lines' extremes */
inline void checkLineExtremes( cv::Vec4f& extremes, cv::Size imageSize )
{
if( extremes[0] < 0 )
extremes[0] = 0;
if( extremes[0] >= imageSize.width )
extremes[0] = (float)imageSize.width - 1.0f;
if( extremes[2] < 0 )
extremes[2] = 0;
if( extremes[2] >= imageSize.width )
extremes[2] = (float)imageSize.width - 1.0f;
if( extremes[1] < 0 )
extremes[1] = 0;
if( extremes[1] >= imageSize.height )
extremes[1] = (float)imageSize.height - 1.0f;
if( extremes[3] < 0 )
extremes[3] = 0;
if( extremes[3] >= imageSize.height )
extremes[3] = (float)imageSize.height - 1.0f;
}
/* requires line detection (only one image) */
void LSDDetector::detect( const Mat& image, CV_OUT std::vector<KeyLine>& keylines, int scale, int numOctaves, const Mat& mask )
{
if( mask.data != NULL && ( mask.size() != image.size() || mask.type() != CV_8UC1 ) )
throw std::runtime_error( "Mask error while detecting lines: please check its dimensions and that data type is CV_8UC1" );
else
detectImpl( image, keylines, numOctaves, scale, mask );
}
/* requires line detection (more than one image) */
void LSDDetector::detect( const std::vector<Mat>& images, std::vector<std::vector<KeyLine> >& keylines, int scale, int numOctaves,
const std::vector<Mat>& masks ) const
{
/* detect lines from each image */
for ( size_t counter = 0; counter < images.size(); counter++ )
{
if( masks[counter].data != NULL && ( masks[counter].size() != images[counter].size() || masks[counter].type() != CV_8UC1 ) )
throw std::runtime_error( "Masks error while detecting lines: please check their dimensions and that data types are CV_8UC1" );
else
detectImpl( images[counter], keylines[counter], numOctaves, scale, masks[counter] );
}
}
/* implementation of line detection */
void LSDDetector::detectImpl( const Mat& imageSrc, std::vector<KeyLine>& keylines, int numOctaves, int scale, const Mat& mask ) const
{
cv::Mat image;
if( imageSrc.channels() != 1 )
cvtColor( imageSrc, image, COLOR_BGR2GRAY );
else
image = imageSrc.clone();
/*check whether image depth is different from 0 */
if( image.depth() != 0 )
throw std::runtime_error( "Error, depth image!= 0" );
/* create a pointer to self */
LSDDetector *lsd = const_cast<LSDDetector*>( this );
/* compute Gaussian pyramids */
lsd->computeGaussianPyramid( image, numOctaves, scale );
/* create an LSD extractor */
cv::Ptr<cv::LineSegmentDetector> ls = cv::createLineSegmentDetector( cv::LSD_REFINE_ADV );
/* prepare a vector to host extracted segments */
std::vector<std::vector<cv::Vec4f> > lines_lsd;
/* extract lines */
for ( int i = 0; i < numOctaves; i++ )
{
std::vector<Vec4f> octave_lines;
ls->detect( gaussianPyrs[i], octave_lines );
lines_lsd.push_back( octave_lines );
}
/* create keylines */
int class_counter = -1;
for ( int octaveIdx = 0; octaveIdx < (int) lines_lsd.size(); octaveIdx++ )
{
float octaveScale = pow( (float)scale, octaveIdx );
for ( int k = 0; k < (int) lines_lsd[octaveIdx].size(); k++ )
{
KeyLine kl;
cv::Vec4f extremes = lines_lsd[octaveIdx][k];
/* check data validity */
checkLineExtremes( extremes, gaussianPyrs[octaveIdx].size() );
/* fill KeyLine's fields */
kl.startPointX = extremes[0] * octaveScale;
kl.startPointY = extremes[1] * octaveScale;
kl.endPointX = extremes[2] * octaveScale;
kl.endPointY = extremes[3] * octaveScale;
kl.sPointInOctaveX = extremes[0];
kl.sPointInOctaveY = extremes[1];
kl.ePointInOctaveX = extremes[2];
kl.ePointInOctaveY = extremes[3];
kl.lineLength = (float) sqrt( pow( extremes[0] - extremes[2], 2 ) + pow( extremes[1] - extremes[3], 2 ) );
/* compute number of pixels covered by line */
LineIterator li( gaussianPyrs[octaveIdx], Point2f( extremes[0], extremes[1] ), Point2f( extremes[2], extremes[3] ) );
kl.numOfPixels = li.count;
kl.angle = atan2( ( kl.endPointY - kl.startPointY ), ( kl.endPointX - kl.startPointX ) );
kl.class_id = ++class_counter;
kl.octave = octaveIdx;
kl.size = ( kl.endPointX - kl.startPointX ) * ( kl.endPointY - kl.startPointY );
kl.response = kl.lineLength / max( gaussianPyrs[octaveIdx].cols, gaussianPyrs[octaveIdx].rows );
kl.pt = Point2f( ( kl.endPointX + kl.startPointX ) / 2, ( kl.endPointY + kl.startPointY ) / 2 );
keylines.push_back( kl );
}
}
/* delete undesired KeyLines, according to input mask */
if( !mask.empty() )
{
for ( size_t keyCounter = 0; keyCounter < keylines.size(); keyCounter++ )
{
KeyLine kl = keylines[keyCounter];
if( mask.at<uchar>( (int) kl.startPointY, (int) kl.startPointX ) == 0 && mask.at<uchar>( (int) kl.endPointY, (int) kl.endPointX ) == 0 )
{
keylines.erase( keylines.begin() + keyCounter );
keyCounter--;
}
}
}
}
}
}