You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
325 lines
8.6 KiB
325 lines
8.6 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
/* |
|
* TrackerFeature |
|
*/ |
|
|
|
TrackerFeature::~TrackerFeature() |
|
{ |
|
|
|
} |
|
|
|
void TrackerFeature::compute( const std::vector<Mat>& images, Mat& response ) |
|
{ |
|
if( images.empty() ) |
|
return; |
|
|
|
computeImpl( images, response ); |
|
} |
|
|
|
Ptr<TrackerFeature> TrackerFeature::create( const String& trackerFeatureType ) |
|
{ |
|
if( trackerFeatureType.find( "FEATURE2D" ) == 0 ) |
|
{ |
|
size_t firstSep = trackerFeatureType.find_first_of( "." ); |
|
size_t secondSep = trackerFeatureType.find_last_of( "." ); |
|
|
|
String detector = trackerFeatureType.substr( firstSep, secondSep - firstSep ); |
|
String descriptor = trackerFeatureType.substr( secondSep, trackerFeatureType.length() - secondSep ); |
|
|
|
return Ptr<TrackerFeatureFeature2d>( new TrackerFeatureFeature2d( detector, descriptor ) ); |
|
} |
|
|
|
if( trackerFeatureType.find( "HOG" ) == 0 ) |
|
{ |
|
return Ptr<TrackerFeatureHOG>( new TrackerFeatureHOG() ); |
|
} |
|
|
|
if( trackerFeatureType.find( "HAAR" ) == 0 ) |
|
{ |
|
return Ptr<TrackerFeatureHAAR>( new TrackerFeatureHAAR() ); |
|
} |
|
|
|
if( trackerFeatureType.find( "LBP" ) == 0 ) |
|
{ |
|
return Ptr<TrackerFeatureLBP>( new TrackerFeatureLBP() ); |
|
} |
|
|
|
CV_Error( -1, "Tracker feature type not supported" ); |
|
return Ptr<TrackerFeature>(); |
|
} |
|
|
|
String TrackerFeature::getClassName() const |
|
{ |
|
return className; |
|
} |
|
|
|
/** |
|
* TrackerFeatureFeature2d |
|
*/ |
|
TrackerFeatureFeature2d::TrackerFeatureFeature2d( String /*detectorType*/, String /*descriptorType*/) |
|
{ |
|
className = "FEATURE2D"; |
|
} |
|
|
|
TrackerFeatureFeature2d::~TrackerFeatureFeature2d() |
|
{ |
|
|
|
} |
|
|
|
bool TrackerFeatureFeature2d::computeImpl( const std::vector<Mat>& /*images*/, Mat& /*response*/) |
|
{ |
|
return false; |
|
} |
|
|
|
void TrackerFeatureFeature2d::selection( Mat& /*response*/, int /*npoints*/) |
|
{ |
|
|
|
} |
|
|
|
/** |
|
* TrackerFeatureHOG |
|
*/ |
|
TrackerFeatureHOG::TrackerFeatureHOG() |
|
{ |
|
className = "HOG"; |
|
} |
|
|
|
TrackerFeatureHOG::~TrackerFeatureHOG() |
|
{ |
|
|
|
} |
|
|
|
bool TrackerFeatureHOG::computeImpl( const std::vector<Mat>& /*images*/, Mat& /*response*/) |
|
{ |
|
return false; |
|
} |
|
|
|
void TrackerFeatureHOG::selection( Mat& /*response*/, int /*npoints*/) |
|
{ |
|
|
|
} |
|
|
|
/** |
|
* TrackerFeatureHAAR |
|
*/ |
|
|
|
/** |
|
* Parameters |
|
*/ |
|
|
|
TrackerFeatureHAAR::Params::Params() |
|
{ |
|
numFeatures = 250; |
|
rectSize = Size( 100, 100 ); |
|
isIntegral = false; |
|
} |
|
|
|
TrackerFeatureHAAR::TrackerFeatureHAAR( const TrackerFeatureHAAR::Params ¶meters ) : |
|
params( parameters ) |
|
{ |
|
className = "HAAR"; |
|
|
|
CvHaarFeatureParams haarParams; |
|
haarParams.numFeatures = params.numFeatures; |
|
haarParams.isIntegral = params.isIntegral; |
|
featureEvaluator = CvFeatureEvaluator::create( CvFeatureParams::HAAR ).staticCast<CvHaarEvaluator>(); |
|
featureEvaluator->init( &haarParams, 1, params.rectSize ); |
|
} |
|
|
|
TrackerFeatureHAAR::~TrackerFeatureHAAR() |
|
{ |
|
|
|
} |
|
|
|
CvHaarEvaluator::FeatureHaar& TrackerFeatureHAAR::getFeatureAt( int id ) |
|
{ |
|
return featureEvaluator->getFeatures( id ); |
|
} |
|
|
|
bool TrackerFeatureHAAR::swapFeature( int id, CvHaarEvaluator::FeatureHaar& feature ) |
|
{ |
|
featureEvaluator->getFeatures( id ) = feature; |
|
return true; |
|
} |
|
|
|
bool TrackerFeatureHAAR::swapFeature( int source, int target ) |
|
{ |
|
CvHaarEvaluator::FeatureHaar feature = featureEvaluator->getFeatures( source ); |
|
featureEvaluator->getFeatures( source ) = featureEvaluator->getFeatures( target ); |
|
featureEvaluator->getFeatures( target ) = feature; |
|
return true; |
|
} |
|
|
|
bool TrackerFeatureHAAR::extractSelected( const std::vector<int> selFeatures, const std::vector<Mat>& images, Mat& response ) |
|
{ |
|
if( images.empty() ) |
|
{ |
|
return false; |
|
} |
|
|
|
int numFeatures = featureEvaluator->getNumFeatures(); |
|
int numSelFeatures = (int)selFeatures.size(); |
|
|
|
//response = Mat_<float>( Size( images.size(), numFeatures ) ); |
|
response.create( Size( (int)images.size(), numFeatures ), CV_32F ); |
|
response.setTo( 0 ); |
|
|
|
//double t = getTickCount(); |
|
//for each sample compute #n_feature -> put each feature (n Rect) in response |
|
for ( size_t i = 0; i < images.size(); i++ ) |
|
{ |
|
int c = images[i].cols; |
|
int r = images[i].rows; |
|
for ( int j = 0; j < numSelFeatures; j++ ) |
|
{ |
|
float res = 0; |
|
//const feat |
|
CvHaarEvaluator::FeatureHaar& feature = featureEvaluator->getFeatures( selFeatures[j] ); |
|
feature.eval( images[i], Rect( 0, 0, c, r ), &res ); |
|
//( Mat_<float>( response ) )( j, i ) = res; |
|
response.at<float>( selFeatures[j], (int)i ) = res; |
|
} |
|
} |
|
//t = ( (double) getTickCount() - t ) / getTickFrequency(); |
|
//std::cout << "StrongClassifierDirectSelection time " << t << std::endl; |
|
|
|
return true; |
|
} |
|
|
|
class Parallel_compute : public cv::ParallelLoopBody |
|
{ |
|
private: |
|
Ptr<CvHaarEvaluator> featureEvaluator; |
|
std::vector<Mat> images; |
|
Mat response; |
|
//std::vector<CvHaarEvaluator::FeatureHaar> features; |
|
public: |
|
Parallel_compute( Ptr<CvHaarEvaluator>& fe, const std::vector<Mat>& img, Mat& resp ) : |
|
featureEvaluator( fe ), |
|
images( img ), |
|
response( resp ) |
|
{ |
|
|
|
//features = featureEvaluator->getFeatures(); |
|
} |
|
|
|
virtual void operator()( const cv::Range &r ) const |
|
{ |
|
for ( register int jf = r.start; jf != r.end; ++jf ) |
|
{ |
|
int cols = images[jf].cols; |
|
int rows = images[jf].rows; |
|
for ( int j = 0; j < featureEvaluator->getNumFeatures(); j++ ) |
|
{ |
|
float res = 0; |
|
featureEvaluator->getFeatures()[j].eval( images[jf], Rect( 0, 0, cols, rows ), &res ); |
|
( Mat_<float>( response ) )( j, jf ) = res; |
|
} |
|
} |
|
} |
|
}; |
|
|
|
bool TrackerFeatureHAAR::computeImpl( const std::vector<Mat>& images, Mat& response ) |
|
{ |
|
if( images.empty() ) |
|
{ |
|
return false; |
|
} |
|
|
|
int numFeatures = featureEvaluator->getNumFeatures(); |
|
|
|
response = Mat_<float>( Size( (int)images.size(), numFeatures ) ); |
|
|
|
std::vector<CvHaarEvaluator::FeatureHaar> f = featureEvaluator->getFeatures(); |
|
//for each sample compute #n_feature -> put each feature (n Rect) in response |
|
parallel_for_( Range( 0, (int)images.size() ), Parallel_compute( featureEvaluator, images, response ) ); |
|
|
|
/*for ( size_t i = 0; i < images.size(); i++ ) |
|
{ |
|
int c = images[i].cols; |
|
int r = images[i].rows; |
|
for ( int j = 0; j < numFeatures; j++ ) |
|
{ |
|
float res = 0; |
|
featureEvaluator->getFeatures( j ).eval( images[i], Rect( 0, 0, c, r ), &res ); |
|
( Mat_<float>( response ) )( j, i ) = res; |
|
} |
|
}*/ |
|
|
|
return true; |
|
} |
|
|
|
void TrackerFeatureHAAR::selection( Mat& /*response*/, int /*npoints*/) |
|
{ |
|
|
|
} |
|
|
|
/** |
|
* TrackerFeatureLBP |
|
*/ |
|
TrackerFeatureLBP::TrackerFeatureLBP() |
|
{ |
|
className = "LBP"; |
|
} |
|
|
|
TrackerFeatureLBP::~TrackerFeatureLBP() |
|
{ |
|
|
|
} |
|
|
|
bool TrackerFeatureLBP::computeImpl( const std::vector<Mat>& /*images*/, Mat& /*response*/) |
|
{ |
|
return false; |
|
} |
|
|
|
void TrackerFeatureLBP::selection( Mat& /*response*/, int /*npoints*/) |
|
{ |
|
|
|
} |
|
|
|
} /* namespace cv */
|
|
|