You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
786 lines
29 KiB
786 lines
29 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/core/core_c.h" |
|
#include "opencv2/core/private.hpp" |
|
#include "opencv2/flann/miniflann.hpp" |
|
#include "opencv2/imgcodecs.hpp" |
|
#include "opencl_kernels_optflow.hpp" |
|
#include "opencv2/core/hal/intrin.hpp" |
|
#ifdef CV_CXX11 |
|
#include <random> // std::mt19937 |
|
#endif |
|
|
|
/* Disable "from double to float" and "from size_t to int" warnings. |
|
* Fixing these would make the code look ugly by introducing explicit cast all around. |
|
* Here these warning are pointless anyway. |
|
*/ |
|
#ifdef _MSC_VER |
|
#pragma warning( disable : 4244 4267 4838 ) |
|
#endif |
|
#ifdef __clang__ |
|
#pragma clang diagnostic ignored "-Wshorten-64-to-32" |
|
#endif |
|
|
|
namespace cv |
|
{ |
|
namespace optflow |
|
{ |
|
namespace |
|
{ |
|
|
|
#define PATCH_RADIUS 10 |
|
#define PATCH_RADIUS_DOUBLED 20 |
|
#define SQRT2_INV 0.7071067811865475 |
|
|
|
const int patchRadius = PATCH_RADIUS; |
|
const int globalIters = 3; |
|
const int localIters = 500; |
|
const double thresholdOutliers = 0.98; |
|
const double thresholdMagnitudeFrac = 0.8; |
|
const double epsTolerance = 1e-12; |
|
const unsigned scoreGainPos = 5; |
|
const unsigned scoreGainNeg = 1; |
|
const unsigned negSearchKNN = 5; |
|
const double simulatedAnnealingTemperatureCoef = 200.0; |
|
const double sigmaGrowthRate = 0.2; |
|
|
|
RNG rng; |
|
|
|
struct Magnitude |
|
{ |
|
float val; |
|
int i; |
|
int j; |
|
|
|
Magnitude( float _val, int _i, int _j ) : val( _val ), i( _i ), j( _j ) {} |
|
Magnitude() {} |
|
|
|
bool operator<( const Magnitude &m ) const { return val > m.val; } |
|
}; |
|
|
|
struct PartitionPredicate1 |
|
{ |
|
Vec< double, GPCPatchDescriptor::nFeatures > coef; |
|
double rhs; |
|
|
|
PartitionPredicate1( const Vec< double, GPCPatchDescriptor::nFeatures > &_coef, double _rhs ) : coef( _coef ), rhs( _rhs ) {} |
|
|
|
bool operator()( const GPCPatchSample &sample ) const |
|
{ |
|
bool refdir, posdir, negdir; |
|
sample.getDirections( refdir, posdir, negdir, coef, rhs ); |
|
return refdir == false && ( posdir == false || negdir == true ); |
|
} |
|
}; |
|
|
|
struct PartitionPredicate2 |
|
{ |
|
Vec< double, GPCPatchDescriptor::nFeatures > coef; |
|
double rhs; |
|
|
|
PartitionPredicate2( const Vec< double, GPCPatchDescriptor::nFeatures > &_coef, double _rhs ) : coef( _coef ), rhs( _rhs ) {} |
|
|
|
bool operator()( const GPCPatchSample &sample ) const |
|
{ |
|
bool refdir, posdir, negdir; |
|
sample.getDirections( refdir, posdir, negdir, coef, rhs ); |
|
return refdir != posdir && refdir == negdir; |
|
} |
|
}; |
|
|
|
struct CompareWithTolerance |
|
{ |
|
double val; |
|
|
|
CompareWithTolerance( double _val ) : val( _val ) {}; |
|
|
|
bool operator()( const double &elem ) const |
|
{ |
|
const double diff = ( val + elem == 0 ) ? std::abs( val - elem ) : std::abs( ( val - elem ) / ( val + elem ) ); |
|
return diff <= epsTolerance; |
|
} |
|
}; |
|
|
|
float normL2Sqr( const Vec2f &v ) { return v[0] * v[0] + v[1] * v[1]; } |
|
|
|
int normL2Sqr( const Point2i &v ) { return v.x * v.x + v.y * v.y; } |
|
|
|
bool checkBounds( int i, int j, Size sz ) |
|
{ |
|
return i >= patchRadius && j >= patchRadius && i + patchRadius < sz.height && j + patchRadius < sz.width; |
|
} |
|
|
|
void getDCTPatchDescriptor( GPCPatchDescriptor &patchDescr, const Mat *imgCh, int i, int j ) |
|
{ |
|
Rect roi( j - patchRadius, i - patchRadius, 2 * patchRadius, 2 * patchRadius ); |
|
Mat freqDomain; |
|
dct( imgCh[0]( roi ), freqDomain ); |
|
|
|
double *feature = patchDescr.feature.val; |
|
feature[0] = freqDomain.at< float >( 0, 0 ); |
|
feature[1] = freqDomain.at< float >( 0, 1 ); |
|
feature[2] = freqDomain.at< float >( 0, 2 ); |
|
feature[3] = freqDomain.at< float >( 0, 3 ); |
|
|
|
feature[4] = freqDomain.at< float >( 1, 0 ); |
|
feature[5] = freqDomain.at< float >( 1, 1 ); |
|
feature[6] = freqDomain.at< float >( 1, 2 ); |
|
feature[7] = freqDomain.at< float >( 1, 3 ); |
|
|
|
feature[8] = freqDomain.at< float >( 2, 0 ); |
|
feature[9] = freqDomain.at< float >( 2, 1 ); |
|
feature[10] = freqDomain.at< float >( 2, 2 ); |
|
feature[11] = freqDomain.at< float >( 2, 3 ); |
|
|
|
feature[12] = freqDomain.at< float >( 3, 0 ); |
|
feature[13] = freqDomain.at< float >( 3, 1 ); |
|
feature[14] = freqDomain.at< float >( 3, 2 ); |
|
feature[15] = freqDomain.at< float >( 3, 3 ); |
|
|
|
feature[16] = cv::sum( imgCh[1]( roi ) )[0] / ( 2 * patchRadius ); |
|
feature[17] = cv::sum( imgCh[2]( roi ) )[0] / ( 2 * patchRadius ); |
|
} |
|
|
|
double sumInt( const Mat &integ, int i, int j, int h, int w ) |
|
{ |
|
return integ.at< double >( i + h, j + w ) - integ.at< double >( i + h, j ) - integ.at< double >( i, j + w ) + integ.at< double >( i, j ); |
|
} |
|
|
|
void getWHTPatchDescriptor( GPCPatchDescriptor &patchDescr, const Mat *imgCh, int i, int j ) |
|
{ |
|
i -= patchRadius; |
|
j -= patchRadius; |
|
const int k = 2 * patchRadius; |
|
const double s = sumInt( imgCh[0], i, j, k, k ); |
|
double *feature = patchDescr.feature.val; |
|
|
|
feature[0] = s; |
|
feature[1] = s - 2 * sumInt( imgCh[0], i, j + k / 2, k, k / 2 ); |
|
feature[2] = s - 2 * sumInt( imgCh[0], i, j + k / 4, k, k / 2 ); |
|
feature[3] = s - 2 * sumInt( imgCh[0], i, j + k / 4, k, k / 4 ) - 2 * sumInt( imgCh[0], i, j + 3 * k / 4, k, k / 4 ); |
|
|
|
feature[4] = s - 2 * sumInt( imgCh[0], i + k / 2, j, k / 2, k ); |
|
feature[5] = s - 2 * sumInt( imgCh[0], i, j + k / 2, k / 2, k / 2 ) - 2 * sumInt( imgCh[0], i + k / 2, j, k / 2, k / 2 ); |
|
feature[6] = s - 2 * sumInt( imgCh[0], i, j + k / 4, k / 2, k / 2 ) - 2 * sumInt( imgCh[0], i + k / 2, j, k / 2, k / 4 ) - |
|
2 * sumInt( imgCh[0], i + k / 2, j + 3 * k / 4, k / 2, k / 4 ); |
|
feature[7] = s - 2 * sumInt( imgCh[0], i, j + k / 4, k / 2, k / 4 ) - 2 * sumInt( imgCh[0], i, j + 3 * k / 4, k / 2, k / 4 ) - |
|
2 * sumInt( imgCh[0], i + k / 2, j, k / 2, k / 4 ) - 2 * sumInt( imgCh[0], i + k / 2, j + k / 2, k / 2, k / 4 ); |
|
|
|
feature[8] = s - 2 * sumInt( imgCh[0], i + k / 4, j, k / 2, k ); |
|
feature[9] = s - 2 * sumInt( imgCh[0], i + k / 4, j, k / 2, k / 2 ) - 2 * sumInt( imgCh[0], i, j + k / 2, k / 4, k / 2 ) - |
|
2 * sumInt( imgCh[0], i + 3 * k / 4, j + k / 2, k / 4, k / 2 ); |
|
feature[10] = s - 2 * sumInt( imgCh[0], i + k / 4, j, k / 2, k / 4 ) - 2 * sumInt( imgCh[0], i + k / 4, j + 3 * k / 4, k / 2, k / 4 ) - |
|
2 * sumInt( imgCh[0], i, j + k / 4, k / 4, k / 2 ) - 2 * sumInt( imgCh[0], i + 3 * k / 4, j + k / 4, k / 4, k / 2 ); |
|
feature[11] = s - 2 * sumInt( imgCh[0], i, j + k / 4, k / 4, k / 4 ) - 2 * sumInt( imgCh[0], i, j + 3 * k / 4, k / 4, k / 4 ) - |
|
2 * sumInt( imgCh[0], i + k / 4, j, k / 2, k / 4 ) - 2 * sumInt( imgCh[0], i + k / 4, j + k / 2, k / 2, k / 4 ) - |
|
2 * sumInt( imgCh[0], i + 3 * k / 4, j + k / 4, k / 4, k / 4 ) - |
|
2 * sumInt( imgCh[0], i + 3 * k / 4, j + 3 * k / 4, k / 4, k / 4 ); |
|
|
|
feature[12] = s - 2 * sumInt( imgCh[0], i + k / 4, j, k / 4, k ) - 2 * sumInt( imgCh[0], i + 3 * k / 4, j, k / 4, k ); |
|
feature[13] = s - 2 * sumInt( imgCh[0], i + k / 4, j, k / 4, k / 2 ) - 2 * sumInt( imgCh[0], i + 3 * k / 4, j, k / 4, k / 2 ) - |
|
2 * sumInt( imgCh[0], i, j + k / 2, k / 4, k / 2 ) - 2 * sumInt( imgCh[0], i + k / 2, j + k / 2, k / 4, k / 2 ); |
|
feature[14] = s - 2 * sumInt( imgCh[0], i + k / 4, j, k / 4, k / 4 ) - 2 * sumInt( imgCh[0], i + 3 * k / 4, j, k / 4, k / 4 ) - |
|
2 * sumInt( imgCh[0], i, j + k / 4, k / 4, k / 2 ) - 2 * sumInt( imgCh[0], i + k / 2, j + k / 4, k / 4, k / 2 ) - |
|
2 * sumInt( imgCh[0], i + k / 4, j + 3 * k / 4, k / 4, k / 4 ) - |
|
2 * sumInt( imgCh[0], i + 3 * k / 4, j + 3 * k / 4, k / 4, k / 4 ); |
|
feature[15] = s - 2 * sumInt( imgCh[0], i, j + k / 4, k / 4, k / 4 ) - 2 * sumInt( imgCh[0], i, j + 3 * k / 4, k / 4, k / 4 ) - |
|
2 * sumInt( imgCh[0], i + k / 4, j, k / 4, k / 4 ) - 2 * sumInt( imgCh[0], i + k / 4, j + k / 2, k / 4, k / 4 ) - |
|
2 * sumInt( imgCh[0], i + k / 2, j + k / 4, k / 4, k / 4 ) - |
|
2 * sumInt( imgCh[0], i + k / 2, j + 3 * k / 4, k / 4, k / 4 ) - 2 * sumInt( imgCh[0], i + 3 * k / 4, j, k / 4, k / 4 ) - |
|
2 * sumInt( imgCh[0], i + 3 * k / 4, j + k / 2, k / 4, k / 4 ); |
|
|
|
feature[16] = sumInt( imgCh[1], i, j, k, k ); |
|
feature[17] = sumInt( imgCh[2], i, j, k, k ); |
|
|
|
patchDescr.feature /= patchRadius; |
|
} |
|
|
|
class ParallelDCTFiller : public ParallelLoopBody |
|
{ |
|
private: |
|
const Size sz; |
|
const Mat *imgCh; |
|
std::vector< GPCPatchDescriptor > *descr; |
|
|
|
ParallelDCTFiller &operator=( const ParallelDCTFiller & ); |
|
|
|
public: |
|
ParallelDCTFiller( const Size &_sz, const Mat *_imgCh, std::vector< GPCPatchDescriptor > *_descr ) |
|
: sz( _sz ), imgCh( _imgCh ), descr( _descr ){}; |
|
|
|
void operator()( const Range &range ) const CV_OVERRIDE |
|
{ |
|
for ( int i = range.start; i < range.end; ++i ) |
|
{ |
|
int x, y; |
|
GPCDetails::getCoordinatesFromIndex( i, sz, x, y ); |
|
getDCTPatchDescriptor( descr->at( i ), imgCh, y, x ); |
|
} |
|
} |
|
}; |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
bool ocl_getAllDCTDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescriptor > &descr ) |
|
{ |
|
const Size sz = imgCh[0].size(); |
|
ocl::Kernel kernel( "getPatchDescriptor", ocl::optflow::sparse_matching_gpc_oclsrc, |
|
format( "-DPATCH_RADIUS_DOUBLED=%d -DCV_PI=%f -DSQRT2_INV=%f", PATCH_RADIUS_DOUBLED, CV_PI, SQRT2_INV ) ); |
|
size_t globSize[] = {sz.height - 2 * patchRadius, sz.width - 2 * patchRadius}; |
|
UMat out( globSize[0] * globSize[1], GPCPatchDescriptor::nFeatures, CV_64F ); |
|
if ( |
|
kernel |
|
.args( cv::ocl::KernelArg::ReadOnlyNoSize( imgCh[0].getUMat( ACCESS_READ ) ), |
|
cv::ocl::KernelArg::ReadOnlyNoSize( imgCh[1].getUMat( ACCESS_READ ) ), |
|
cv::ocl::KernelArg::ReadOnlyNoSize( imgCh[2].getUMat( ACCESS_READ ) ), |
|
cv::ocl::KernelArg::WriteOnlyNoSize( out ), |
|
(int)globSize[0], (int)globSize[1], (int)patchRadius ) |
|
.run( 2, globSize, 0, true ) == false ) |
|
return false; |
|
Mat cpuOut = out.getMat( ACCESS_READ ); |
|
for ( int i = 0; i + 2 * patchRadius < sz.height; ++i ) |
|
for ( int j = 0; j + 2 * patchRadius < sz.width; ++j ) |
|
descr.push_back( *cpuOut.ptr< GPCPatchDescriptor >( i * globSize[1] + j ) ); |
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
void getAllDCTDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescriptor > &descr, const GPCMatchingParams &mp ) |
|
{ |
|
const Size sz = imgCh[0].size(); |
|
descr.reserve( ( sz.height - 2 * patchRadius ) * ( sz.width - 2 * patchRadius ) ); |
|
|
|
(void)mp; // Fix unused parameter warning in case OpenCL is not available |
|
CV_OCL_RUN( mp.useOpenCL, ocl_getAllDCTDescriptorsForImage( imgCh, descr ) ) |
|
|
|
descr.resize( ( sz.height - 2 * patchRadius ) * ( sz.width - 2 * patchRadius ) ); |
|
parallel_for_( Range( 0, descr.size() ), ParallelDCTFiller( sz, imgCh, &descr ) ); |
|
} |
|
|
|
class ParallelWHTFiller : public ParallelLoopBody |
|
{ |
|
private: |
|
const Size sz; |
|
const Mat *imgChInt; |
|
std::vector< GPCPatchDescriptor > *descr; |
|
|
|
ParallelWHTFiller &operator=( const ParallelWHTFiller & ); |
|
|
|
public: |
|
ParallelWHTFiller( const Size &_sz, const Mat *_imgChInt, std::vector< GPCPatchDescriptor > *_descr ) |
|
: sz( _sz ), imgChInt( _imgChInt ), descr( _descr ){}; |
|
|
|
void operator()( const Range &range ) const CV_OVERRIDE |
|
{ |
|
for ( int i = range.start; i < range.end; ++i ) |
|
{ |
|
int x, y; |
|
GPCDetails::getCoordinatesFromIndex( i, sz, x, y ); |
|
getWHTPatchDescriptor( descr->at( i ), imgChInt, y, x ); |
|
} |
|
} |
|
}; |
|
|
|
void getAllWHTDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescriptor > &descr, const GPCMatchingParams & ) |
|
{ |
|
const Size sz = imgCh[0].size(); |
|
descr.resize( ( sz.height - 2 * patchRadius ) * ( sz.width - 2 * patchRadius ) ); |
|
|
|
Mat imgChInt[3]; |
|
integral( imgCh[0], imgChInt[0], CV_64F ); |
|
integral( imgCh[1], imgChInt[1], CV_64F ); |
|
integral( imgCh[2], imgChInt[2], CV_64F ); |
|
|
|
parallel_for_( Range( 0, descr.size() ), ParallelWHTFiller( sz, imgChInt, &descr ) ); |
|
} |
|
|
|
void buildIndex( OutputArray featuresOut, flann::Index &index, const Mat *imgCh, |
|
void ( *getAllDescrFn )( const Mat *, std::vector< GPCPatchDescriptor > &, const GPCMatchingParams & ) ) |
|
{ |
|
std::vector< GPCPatchDescriptor > descriptors; |
|
getAllDescrFn( imgCh, descriptors, GPCMatchingParams() ); |
|
|
|
featuresOut.create( descriptors.size(), GPCPatchDescriptor::nFeatures, CV_32F ); |
|
Mat features = featuresOut.getMat(); |
|
|
|
for ( size_t i = 0; i < descriptors.size(); ++i ) |
|
*features.ptr< Vec< float, GPCPatchDescriptor::nFeatures > >( i ) = descriptors[i].feature; |
|
|
|
cv::flann::KDTreeIndexParams indexParams; |
|
index.build( features, indexParams, cvflann::FLANN_DIST_L2 ); |
|
} |
|
|
|
void getTriplet( const Magnitude &mag, const Mat >, const Mat *fromCh, const Mat *toCh, GPCSamplesVector &samples, flann::Index &index, |
|
void ( *getDescFn )( GPCPatchDescriptor &, const Mat *, int, int ) ) |
|
{ |
|
const Size sz = gt.size(); |
|
const int i0 = mag.i; |
|
const int j0 = mag.j; |
|
const int i1 = i0 + cvRound( gt.at< Vec2f >( i0, j0 )[1] ); |
|
const int j1 = j0 + cvRound( gt.at< Vec2f >( i0, j0 )[0] ); |
|
if ( checkBounds( i1, j1, sz ) ) |
|
{ |
|
GPCPatchSample ps; |
|
getDescFn( ps.ref, fromCh, i0, j0 ); |
|
getDescFn( ps.pos, toCh, i1, j1 ); |
|
ps.neg.markAsSeparated(); |
|
|
|
Matx< float, 1, GPCPatchDescriptor::nFeatures > ref32; |
|
Matx< int, 1, negSearchKNN > indices; |
|
int maxDist = 0; |
|
|
|
for ( unsigned i = 0; i < GPCPatchDescriptor::nFeatures; ++i ) |
|
ref32( 0, i ) = ps.ref.feature[i]; |
|
|
|
index.knnSearch( ref32, indices, noArray(), negSearchKNN ); |
|
|
|
for ( unsigned i = 0; i < negSearchKNN; ++i ) |
|
{ |
|
int i2, j2; |
|
GPCDetails::getCoordinatesFromIndex( indices( 0, i ), sz, j2, i2 ); |
|
const int dist = ( i2 - i1 ) * ( i2 - i1 ) + ( j2 - j1 ) * ( j2 - j1 ); |
|
if ( maxDist < dist ) |
|
{ |
|
maxDist = dist; |
|
getDescFn( ps.neg, toCh, i2, j2 ); |
|
} |
|
} |
|
|
|
samples.push_back( ps ); |
|
} |
|
} |
|
|
|
void getTrainingSamples( const Mat &from, const Mat &to, const Mat >, GPCSamplesVector &samples, const int type ) |
|
{ |
|
const Size sz = gt.size(); |
|
std::vector< Magnitude > mag; |
|
|
|
for ( int i = patchRadius; i + patchRadius < sz.height; ++i ) |
|
for ( int j = patchRadius; j + patchRadius < sz.width; ++j ) |
|
mag.push_back( Magnitude( normL2Sqr( gt.at< Vec2f >( i, j ) ), i, j ) ); |
|
|
|
size_t n = size_t( mag.size() * thresholdMagnitudeFrac ); // As suggested in the paper, we discard part of the training samples |
|
// with a small displacement and train to better distinguish hard pairs. |
|
std::nth_element( mag.begin(), mag.begin() + n, mag.end() ); |
|
mag.resize( n ); |
|
#ifdef CV_CXX11 |
|
std::mt19937 std_rng(cv::theRNG()()); |
|
std::shuffle(mag.begin(), mag.end(), std_rng); |
|
#else |
|
std::random_shuffle( mag.begin(), mag.end() ); |
|
#endif |
|
n /= patchRadius; |
|
mag.resize( n ); |
|
|
|
if ( type == GPC_DESCRIPTOR_DCT ) |
|
{ |
|
Mat fromCh[3], toCh[3]; |
|
split( from, fromCh ); |
|
split( to, toCh ); |
|
|
|
Mat allDescriptors; |
|
flann::Index index; |
|
buildIndex( allDescriptors, index, toCh, getAllDCTDescriptorsForImage ); |
|
|
|
for ( size_t k = 0; k < n; ++k ) |
|
getTriplet( mag[k], gt, fromCh, toCh, samples, index, getDCTPatchDescriptor ); |
|
} |
|
else if ( type == GPC_DESCRIPTOR_WHT ) |
|
{ |
|
Mat fromCh[3], toCh[3], fromChInt[3], toChInt[3]; |
|
split( from, fromCh ); |
|
split( to, toCh ); |
|
integral( fromCh[0], fromChInt[0], CV_64F ); |
|
integral( fromCh[1], fromChInt[1], CV_64F ); |
|
integral( fromCh[2], fromChInt[2], CV_64F ); |
|
integral( toCh[0], toChInt[0], CV_64F ); |
|
integral( toCh[1], toChInt[1], CV_64F ); |
|
integral( toCh[2], toChInt[2], CV_64F ); |
|
|
|
Mat allDescriptors; |
|
flann::Index index; |
|
buildIndex( allDescriptors, index, toCh, getAllWHTDescriptorsForImage ); |
|
|
|
for ( size_t k = 0; k < n; ++k ) |
|
getTriplet( mag[k], gt, fromChInt, toChInt, samples, index, getWHTPatchDescriptor ); |
|
} |
|
else |
|
CV_Error( CV_StsBadArg, "Unknown descriptor type" ); |
|
} |
|
|
|
/* Sample random number from Cauchy distribution. */ |
|
double getRandomCauchyScalar() |
|
{ |
|
return tan( rng.uniform( -1.54, 1.54 ) ); // I intentionally used the value slightly less than PI/2 to enforce strictly |
|
// zero probability for large numbers. Resulting PDF for Cauchy has |
|
// truncated "tails". |
|
} |
|
|
|
/* Sample random vector from Cauchy distribution (pointwise, i.e. vector whose components are independent random |
|
* variables from Cauchy distribution) */ |
|
void getRandomCauchyVector( Vec< double, GPCPatchDescriptor::nFeatures > &v ) |
|
{ |
|
for ( unsigned i = 0; i < GPCPatchDescriptor::nFeatures; ++i ) |
|
v[i] = getRandomCauchyScalar(); |
|
} |
|
|
|
double getRobustMedian( double m ) { return m < 0 ? m * ( 1.0 + epsTolerance ) : m * ( 1.0 - epsTolerance ); } |
|
} |
|
|
|
double GPCPatchDescriptor::dot( const Vec< double, nFeatures > &coef ) const |
|
{ |
|
#if CV_SIMD128_64F |
|
v_float64x2 sum = v_setzero_f64(); |
|
for ( unsigned i = 0; i < nFeatures; i += 2 ) |
|
{ |
|
v_float64x2 x = v_load( &feature.val[i] ); |
|
v_float64x2 y = v_load( &coef.val[i] ); |
|
sum = v_muladd( x, y, sum ); |
|
} |
|
#if CV_SSE2 |
|
__m128d sumrev = _mm_shuffle_pd( sum.val, sum.val, _MM_SHUFFLE2( 0, 1 ) ); |
|
return _mm_cvtsd_f64( _mm_add_pd( sum.val, sumrev ) ); |
|
#else |
|
double CV_DECL_ALIGNED( 16 ) buf[2]; |
|
v_store_aligned( buf, sum ); |
|
return OPENCV_HAL_ADD( buf[0], buf[1] ); |
|
#endif |
|
|
|
#else |
|
return feature.dot( coef ); |
|
#endif |
|
} |
|
|
|
void GPCPatchSample::getDirections( bool &refdir, bool &posdir, bool &negdir, const Vec< double, GPCPatchDescriptor::nFeatures > &coef, double rhs ) const |
|
{ |
|
refdir = ( ref.dot( coef ) < rhs ); |
|
posdir = pos.isSeparated() ? ( !refdir ) : ( pos.dot( coef ) < rhs ); |
|
negdir = neg.isSeparated() ? ( !refdir ) : ( neg.dot( coef ) < rhs ); |
|
} |
|
|
|
void GPCDetails::getAllDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescriptor > &descr, const GPCMatchingParams &mp, |
|
int type ) |
|
{ |
|
if ( type == GPC_DESCRIPTOR_DCT ) |
|
getAllDCTDescriptorsForImage( imgCh, descr, mp ); |
|
else if ( type == GPC_DESCRIPTOR_WHT ) |
|
getAllWHTDescriptorsForImage( imgCh, descr, mp ); |
|
else |
|
CV_Error( CV_StsBadArg, "Unknown descriptor type" ); |
|
} |
|
|
|
void GPCDetails::getCoordinatesFromIndex( size_t index, Size sz, int &x, int &y ) |
|
{ |
|
const size_t stride = sz.width - patchRadius * 2; |
|
y = int( index / stride ); |
|
x = int( index - y * stride + patchRadius ); |
|
y += patchRadius; |
|
} |
|
|
|
bool GPCTree::trainNode( size_t nodeId, SIter begin, SIter end, unsigned depth ) |
|
{ |
|
const int nSamples = (int)std::distance( begin, end ); |
|
|
|
if ( nSamples < params.minNumberOfSamples || depth >= params.maxTreeDepth ) |
|
return false; |
|
|
|
if ( nodeId >= nodes.size() ) |
|
nodes.resize( nodeId + 1 ); |
|
|
|
Node &node = nodes[nodeId]; |
|
|
|
// Select the best hyperplane |
|
unsigned globalBestScore = 0; |
|
std::vector< double > values; |
|
values.reserve( nSamples * 2 ); |
|
|
|
for ( int j = 0; j < globalIters; ++j ) |
|
{ // Global search step |
|
Vec< double, GPCPatchDescriptor::nFeatures > coef; |
|
unsigned localBestScore = 0; |
|
getRandomCauchyVector( coef ); |
|
|
|
for ( int i = 0; i < localIters; ++i ) |
|
{ // Local search step |
|
double randomModification = getRandomCauchyScalar() * ( 1.0 + sigmaGrowthRate * int( i / GPCPatchDescriptor::nFeatures ) ); |
|
const int pos = i % GPCPatchDescriptor::nFeatures; |
|
std::swap( coef[pos], randomModification ); |
|
values.clear(); |
|
|
|
for ( SIter iter = begin; iter != end; ++iter ) |
|
values.push_back( iter->ref.dot( coef ) ); |
|
|
|
std::nth_element( values.begin(), values.begin() + nSamples / 2, values.end() ); |
|
double median = values[nSamples / 2]; |
|
|
|
// Skip obviously malformed division. This may happen in case there are a large number of equal samples. |
|
// Most likely this won't happen with samples collected from a good dataset. |
|
// Happens in case dataset contains plain (or close to plain) images. |
|
if ( std::count_if( values.begin(), values.end(), CompareWithTolerance( median ) ) > std::max( 1, nSamples / 4 ) ) |
|
continue; |
|
|
|
median = getRobustMedian( median ); |
|
|
|
unsigned score = 0; |
|
for ( SIter iter = begin; iter != end; ++iter ) |
|
{ |
|
bool refdir, posdir, negdir; |
|
iter->getDirections( refdir, posdir, negdir, coef, median ); |
|
if ( refdir == posdir ) |
|
score += scoreGainPos; |
|
if ( refdir != negdir ) |
|
score += scoreGainNeg; |
|
} |
|
|
|
if ( score > localBestScore ) |
|
localBestScore = score; |
|
else |
|
{ |
|
const double beta = simulatedAnnealingTemperatureCoef * std::sqrt( static_cast<float>(i) ) / ( nSamples * ( scoreGainPos + scoreGainNeg ) ); |
|
if ( rng.uniform( 0.0, 1.0 ) > std::exp( -beta * ( localBestScore - score) ) ) |
|
coef[pos] = randomModification; |
|
} |
|
|
|
if ( score > globalBestScore ) |
|
{ |
|
globalBestScore = score; |
|
node.coef = coef; |
|
node.rhs = median; |
|
} |
|
} |
|
} |
|
|
|
if ( globalBestScore == 0 ) |
|
return false; |
|
|
|
if ( params.printProgress ) |
|
{ |
|
const int maxScore = nSamples * ( scoreGainPos + scoreGainNeg ); |
|
const double correctRatio = double( globalBestScore ) / maxScore; |
|
printf( "[%u] Correct %.2f (%u/%d)\nWeights:", depth, correctRatio, globalBestScore, maxScore ); |
|
for ( unsigned k = 0; k < GPCPatchDescriptor::nFeatures; ++k ) |
|
printf( " %.3f", node.coef[k] ); |
|
printf( "\n" ); |
|
} |
|
|
|
for ( SIter iter = begin; iter != end; ++iter ) |
|
{ |
|
bool refdir, posdir, negdir; |
|
iter->getDirections( refdir, posdir, negdir, node.coef, node.rhs ); |
|
// We shouldn't account for positive sample in the scoring in case it was separated before. So mark it as separated. |
|
// After all, we can't bring back samples which were separated from reference on early levels. |
|
if ( refdir != posdir ) |
|
iter->pos.markAsSeparated(); |
|
// The same for negative sample. |
|
if ( refdir != negdir ) |
|
iter->neg.markAsSeparated(); |
|
// If both positive and negative were separated before then such triplet doesn't make sense on deeper levels. We discard it. |
|
} |
|
|
|
// Partition vector with samples according to the hyperplane in QuickSort-like manner. |
|
// Unlike QuickSort, we need to partition it into 3 parts (left subtree samples; undefined samples; right subtree |
|
// samples), so we call it two times. |
|
SIter leftEnd = std::partition( begin, end, PartitionPredicate1( node.coef, node.rhs ) ); // Separate left subtree samples from others. |
|
SIter rightBegin = |
|
std::partition( leftEnd, end, PartitionPredicate2( node.coef, node.rhs ) ); // Separate undefined samples from right subtree samples. |
|
|
|
node.left = ( trainNode( nodeId * 2 + 1, begin, leftEnd, depth + 1 ) ) ? unsigned( nodeId * 2 + 1 ) : 0; |
|
node.right = ( trainNode( nodeId * 2 + 2, rightBegin, end, depth + 1 ) ) ? unsigned( nodeId * 2 + 2 ) : 0; |
|
|
|
return true; |
|
} |
|
|
|
void GPCTree::train( GPCTrainingSamples &samples, const GPCTrainingParams _params ) |
|
{ |
|
if ( _params.descriptorType != samples.type() ) |
|
CV_Error( CV_StsBadArg, "Descriptor type mismatch! Check that samples are collected with the same descriptor type." ); |
|
nodes.clear(); |
|
nodes.reserve( samples.size() * 2 - 1 ); // set upper bound for the possible number of nodes so all subsequent resize() will be no-op |
|
params = _params; |
|
GPCSamplesVector &sv = samples; |
|
trainNode( 0, sv.begin(), sv.end(), 0 ); |
|
} |
|
|
|
void GPCTree::write( FileStorage &fs ) const |
|
{ |
|
if ( nodes.empty() ) |
|
CV_Error( CV_StsBadArg, "Tree have not been trained" ); |
|
fs << "nodes" << nodes; |
|
fs << "dtype" << (int)params.descriptorType; |
|
} |
|
|
|
void GPCTree::read( const FileNode &fn ) |
|
{ |
|
fn["nodes"] >> nodes; |
|
fn["dtype"] >> (int &)params.descriptorType; |
|
} |
|
|
|
unsigned GPCTree::findLeafForPatch( const GPCPatchDescriptor &descr ) const |
|
{ |
|
unsigned id = 0, prevId; |
|
do |
|
{ |
|
prevId = id; |
|
if ( descr.dot( nodes[id].coef ) < nodes[id].rhs ) |
|
id = nodes[id].right; |
|
else |
|
id = nodes[id].left; |
|
} while ( id ); |
|
return prevId; |
|
} |
|
|
|
Ptr< GPCTrainingSamples > GPCTrainingSamples::create( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo, |
|
const std::vector< String > >, int _descriptorType ) |
|
{ |
|
CV_Assert( imagesFrom.size() == imagesTo.size() ); |
|
CV_Assert( imagesFrom.size() == gt.size() ); |
|
|
|
Ptr< GPCTrainingSamples > ts = makePtr< GPCTrainingSamples >(); |
|
|
|
ts->descriptorType = _descriptorType; |
|
|
|
for ( size_t i = 0; i < imagesFrom.size(); ++i ) |
|
{ |
|
Mat from = imread( imagesFrom[i] ); |
|
Mat to = imread( imagesTo[i] ); |
|
Mat gtFlow = readOpticalFlow( gt[i] ); |
|
|
|
CV_Assert( from.size == to.size ); |
|
CV_Assert( from.size == gtFlow.size ); |
|
CV_Assert( from.channels() == 3 ); |
|
CV_Assert( to.channels() == 3 ); |
|
|
|
from.convertTo( from, CV_32FC3 ); |
|
to.convertTo( to, CV_32FC3 ); |
|
cvtColor( from, from, COLOR_BGR2YCrCb ); |
|
cvtColor( to, to, COLOR_BGR2YCrCb ); |
|
|
|
getTrainingSamples( from, to, gtFlow, ts->samples, ts->descriptorType ); |
|
} |
|
|
|
return ts; |
|
} |
|
|
|
Ptr< GPCTrainingSamples > GPCTrainingSamples::create( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, |
|
InputArrayOfArrays gt, int _descriptorType ) |
|
{ |
|
CV_Assert( imagesFrom.total() == imagesTo.total() ); |
|
CV_Assert( imagesFrom.total() == gt.total() ); |
|
|
|
Ptr< GPCTrainingSamples > ts = makePtr< GPCTrainingSamples >(); |
|
|
|
ts->descriptorType = _descriptorType; |
|
|
|
for ( size_t i = 0; i < imagesFrom.total(); ++i ) |
|
{ |
|
Mat from = imagesFrom.getMat( static_cast<int>( i ) ); |
|
Mat to = imagesTo.getMat( static_cast<int>( i ) ); |
|
Mat gtFlow = gt.getMat( static_cast<int>( i ) ); |
|
|
|
CV_Assert( from.size == to.size ); |
|
CV_Assert( from.size == gtFlow.size ); |
|
CV_Assert( from.channels() == 3 ); |
|
CV_Assert( to.channels() == 3 ); |
|
|
|
from.convertTo( from, CV_32FC3 ); |
|
to.convertTo( to, CV_32FC3 ); |
|
cvtColor( from, from, COLOR_BGR2YCrCb ); |
|
cvtColor( to, to, COLOR_BGR2YCrCb ); |
|
|
|
getTrainingSamples( from, to, gtFlow, ts->samples, ts->descriptorType ); |
|
} |
|
|
|
return ts; |
|
} |
|
|
|
void GPCDetails::dropOutliers( std::vector< std::pair< Point2i, Point2i > > &corr ) |
|
{ |
|
if ( corr.size() == 0 ) |
|
return; |
|
|
|
std::vector< float > mag( corr.size() ); |
|
|
|
for ( size_t i = 0; i < corr.size(); ++i ) |
|
mag[i] = normL2Sqr( corr[i].first - corr[i].second ); |
|
|
|
const size_t threshold = size_t( mag.size() * thresholdOutliers ); |
|
std::nth_element( mag.begin(), mag.begin() + threshold, mag.end() ); |
|
const float percentile = mag[threshold]; |
|
size_t i = 0, j = 0; |
|
|
|
while ( i < corr.size() ) |
|
{ |
|
if ( normL2Sqr( corr[i].first - corr[i].second ) <= percentile ) |
|
{ |
|
corr[j] = corr[i]; |
|
++j; |
|
} |
|
++i; |
|
} |
|
|
|
corr.resize( j ); |
|
} |
|
|
|
} // namespace optflow |
|
|
|
void write( FileStorage &fs, const String &name, const optflow::GPCTree::Node &node ) |
|
{ |
|
cv::internal::WriteStructContext ws( fs, name, CV_NODE_SEQ + CV_NODE_FLOW ); |
|
for ( unsigned i = 0; i < optflow::GPCPatchDescriptor::nFeatures; ++i ) |
|
write( fs, node.coef[i] ); |
|
write( fs, node.rhs ); |
|
write( fs, (int)node.left ); |
|
write( fs, (int)node.right ); |
|
} |
|
|
|
void read( const FileNode &fn, optflow::GPCTree::Node &node, optflow::GPCTree::Node ) |
|
{ |
|
FileNodeIterator it = fn.begin(); |
|
for ( unsigned i = 0; i < optflow::GPCPatchDescriptor::nFeatures; ++i ) |
|
it >> node.coef[i]; |
|
it >> node.rhs >> (int &)node.left >> (int &)node.right; |
|
} |
|
|
|
} // namespace cv
|
|
|