You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
434 lines
14 KiB
434 lines
14 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2015, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "opencv2/tracking/kalman_filters.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::tracking; |
|
|
|
// In this two tests Unscented Kalman Filter are applied to the dynamic system from example "The reentry problem" from |
|
// "A New Extension of the Kalman Filter to Nonlinear Systems" by Simon J. Julier and Jeffrey K. Uhlmann. |
|
class BallisticModel: public UkfSystemModel |
|
{ |
|
static const double step; |
|
|
|
Mat diff_eq(const Mat& x) |
|
{ |
|
double x1 = x.at<double>(0, 0); |
|
double x2 = x.at<double>(1, 0); |
|
double x3 = x.at<double>(2, 0); |
|
double x4 = x.at<double>(3, 0); |
|
double x5 = x.at<double>(4, 0); |
|
|
|
const double h0 = 9.3; |
|
const double beta0 = 0.59783; |
|
const double Gm = 3.9860044 * 1e5; |
|
const double r_e = 6374; |
|
|
|
const double r = sqrt( x1*x1 + x2*x2 ); |
|
const double v = sqrt( x3*x3 + x4*x4 ); |
|
const double d = - beta0 * exp( ( r_e - r )/h0 ) * exp( x5 ) * v; |
|
const double g = - Gm / (r*r*r); |
|
|
|
Mat fx = x.clone(); |
|
|
|
fx.at<double>(0, 0) = x3; |
|
fx.at<double>(1, 0) = x4; |
|
fx.at<double>(2, 0) = d * x3 + g * x1; |
|
fx.at<double>(3, 0) = d * x4 + g * x2; |
|
fx.at<double>(4, 0) = 0.0; |
|
|
|
return fx; |
|
} |
|
public: |
|
void stateConversionFunction(const Mat& x_k, const Mat& u_k, const Mat& v_k, Mat& x_kplus1) |
|
{ |
|
Mat v = sqrt(step) * v_k.clone(); |
|
v.at<double>(0, 0) = 0.0; |
|
v.at<double>(1, 0) = 0.0; |
|
|
|
Mat k1 = diff_eq( x_k ) + v; |
|
Mat tmp = x_k + step*0.5*k1; |
|
Mat k2 = diff_eq( tmp ) + v; |
|
tmp = x_k + step*0.5*k2; |
|
Mat k3 = diff_eq( tmp ) + v; |
|
tmp = x_k + step*k3; |
|
Mat k4 = diff_eq( tmp ) + v; |
|
|
|
x_kplus1 = x_k + (1.0/6.0)*step*( k1 + 2.0*k2 + 2.0*k3 + k4 ) + u_k; |
|
} |
|
|
|
void measurementFunction(const Mat& x_k, const Mat& n_k, Mat& z_k) |
|
{ |
|
double x1 = x_k.at<double>(0, 0); |
|
double x2 = x_k.at<double>(1, 0); |
|
double x1_r = 6374.0; |
|
double x2_r = 0.0; |
|
|
|
double R = sqrt( pow( x1 - x1_r, 2 ) + pow( x2 - x2_r, 2 ) ); |
|
double Phi = atan( (x2 - x2_r)/(x1 - x1_r) ); |
|
|
|
R += n_k.at<double>(0, 0); |
|
Phi += n_k.at<double>(1, 0); |
|
|
|
z_k.at<double>(0, 0) = R; |
|
z_k.at<double>(1, 0) = Phi; |
|
} |
|
}; |
|
|
|
const double BallisticModel::step = 0.05; |
|
|
|
TEST(UKF, br_landing_point) |
|
{ |
|
const double abs_error = 0.1; |
|
|
|
const int nIterations = 4000; // number of iterations before landing |
|
const double landing_coordinate = 2.5; // the expected landing coordinate |
|
|
|
const double alpha = 1; |
|
const double beta = 2.0; |
|
const double kappa = -2.0; |
|
|
|
int MP = 2; |
|
int DP = 5; |
|
int CP = 0; |
|
int type = CV_64F; |
|
|
|
Mat processNoiseCov = Mat::zeros( DP, DP, type ); |
|
processNoiseCov.at<double>(0, 0) = 1e-14; |
|
processNoiseCov.at<double>(1, 1) = 1e-14; |
|
processNoiseCov.at<double>(2, 2) = 2.4065 * 1e-5; |
|
processNoiseCov.at<double>(3, 3) = 2.4065 * 1e-5; |
|
processNoiseCov.at<double>(4, 4) = 1e-6; |
|
Mat processNoiseCovSqrt = Mat::zeros( DP, DP, type ); |
|
sqrt( processNoiseCov, processNoiseCovSqrt ); |
|
|
|
Mat measurementNoiseCov = Mat::zeros( MP, MP, type ); |
|
measurementNoiseCov.at<double>(0, 0) = 1e-3*1e-3; |
|
measurementNoiseCov.at<double>(1, 1) = 0.13*0.13; |
|
Mat measurementNoiseCovSqrt = Mat::zeros( MP, MP, type ); |
|
sqrt( measurementNoiseCov, measurementNoiseCovSqrt ); |
|
|
|
RNG rng( 117 ); |
|
|
|
Mat state( DP, 1, type ); |
|
state.at<double>(0, 0) = 6500.4; |
|
state.at<double>(1, 0) = 349.14; |
|
state.at<double>(2, 0) = -1.8093; |
|
state.at<double>(3, 0) = -6.7967; |
|
state.at<double>(4, 0) = 0.6932; |
|
|
|
Mat initState = state.clone(); |
|
initState.at<double>(4, 0) = 0.0; |
|
|
|
Mat P = 1e-6 * Mat::eye( DP, DP, type ); |
|
P.at<double>(4, 4) = 1.0; |
|
|
|
Mat measurement( MP, 1, type ); |
|
|
|
Mat q( DP, 1, type ); |
|
Mat r( MP, 1, type ); |
|
|
|
Ptr<BallisticModel> model( new BallisticModel() ); |
|
UnscentedKalmanFilterParams params( DP, MP, CP, 0, 0, model ); |
|
|
|
params.stateInit = initState.clone(); |
|
params.errorCovInit = P.clone(); |
|
params.measurementNoiseCov = measurementNoiseCov.clone(); |
|
params.processNoiseCov = processNoiseCov.clone(); |
|
|
|
params.alpha = alpha; |
|
params.beta = beta; |
|
params.k = kappa; |
|
|
|
Ptr<UnscentedKalmanFilter> uncsentedKalmanFilter = createUnscentedKalmanFilter(params); |
|
|
|
Mat correctStateUKF( DP, 1, type ); |
|
Mat u = Mat::zeros( DP, 1, type ); |
|
|
|
for (int i = 0; i<nIterations; i++) |
|
{ |
|
rng.fill( q, RNG::NORMAL, Scalar::all(0), Scalar::all(1) ); |
|
q = processNoiseCovSqrt*q; |
|
|
|
rng.fill( r, RNG::NORMAL, Scalar::all(0), Scalar::all(1) ); |
|
r = measurementNoiseCovSqrt*r; |
|
|
|
model->stateConversionFunction(state, u, q, state); |
|
model->measurementFunction(state, r, measurement); |
|
|
|
uncsentedKalmanFilter->predict(); |
|
correctStateUKF = uncsentedKalmanFilter->correct( measurement ); |
|
} |
|
|
|
double landing_y = correctStateUKF.at<double>(1, 0); |
|
ASSERT_NEAR(landing_coordinate, landing_y, abs_error); |
|
} |
|
|
|
TEST(UKF, DISABLED_br_mean_squared_error) |
|
{ |
|
const double velocity_treshold = 0.09; |
|
const double state_treshold = 0.9; |
|
|
|
const int nIterations = 4000; // number of iterations before landing |
|
|
|
const double alpha = 1; |
|
const double beta = 2.0; |
|
const double kappa = -2.0; |
|
|
|
int MP = 2; |
|
int DP = 5; |
|
int CP = 0; |
|
int type = CV_64F; |
|
|
|
Mat processNoiseCov = Mat::zeros( DP, DP, type ); |
|
processNoiseCov.at<double>(0, 0) = 1e-14; |
|
processNoiseCov.at<double>(1, 1) = 1e-14; |
|
processNoiseCov.at<double>(2, 2) = 2.4065 * 1e-5; |
|
processNoiseCov.at<double>(3, 3) = 2.4065 * 1e-5; |
|
processNoiseCov.at<double>(4, 4) = 1e-6; |
|
Mat processNoiseCovSqrt = Mat::zeros( DP, DP, type ); |
|
sqrt( processNoiseCov, processNoiseCovSqrt ); |
|
|
|
Mat measurementNoiseCov = Mat::zeros( MP, MP, type ); |
|
measurementNoiseCov.at<double>(0, 0) = 1e-3*1e-3; |
|
measurementNoiseCov.at<double>(1, 1) = 0.13*0.13; |
|
Mat measurementNoiseCovSqrt = Mat::zeros( MP, MP, type ); |
|
sqrt( measurementNoiseCov, measurementNoiseCovSqrt ); |
|
|
|
RNG rng( 464 ); |
|
|
|
Mat state( DP, 1, type ); |
|
state.at<double>(0, 0) = 6500.4; |
|
state.at<double>(1, 0) = 349.14; |
|
state.at<double>(2, 0) = -1.8093; |
|
state.at<double>(3, 0) = -6.7967; |
|
state.at<double>(4, 0) = 0.6932; |
|
|
|
Mat initState = state.clone(); |
|
Mat initStateKF = state.clone(); |
|
initStateKF.at<double>(4, 0) = 0.0; |
|
|
|
Mat P = 1e-6 * Mat::eye( DP, DP, type ); |
|
P.at<double>(4, 4) = 1.0; |
|
|
|
Mat measurement( MP, 1, type ); |
|
|
|
Mat q( DP, 1, type); |
|
Mat r( MP, 1, type); |
|
|
|
Ptr<BallisticModel> model( new BallisticModel() ); |
|
UnscentedKalmanFilterParams params( DP, MP, CP, 0, 0, model ); |
|
|
|
params.stateInit = initStateKF.clone(); |
|
params.errorCovInit = P.clone(); |
|
params.measurementNoiseCov = measurementNoiseCov.clone(); |
|
params.processNoiseCov = processNoiseCov.clone(); |
|
|
|
params.alpha = alpha; |
|
params.beta = beta; |
|
params.k = kappa; |
|
|
|
Mat predictStateUKF( DP, 1, type ); |
|
Mat correctStateUKF( DP, 1, type ); |
|
|
|
Mat errors = Mat::zeros( nIterations, 4, type ); |
|
Mat u = Mat::zeros( DP, 1, type ); |
|
|
|
for (int j = 0; j<100; j++) |
|
{ |
|
Ptr<UnscentedKalmanFilter> uncsentedKalmanFilter = createUnscentedKalmanFilter(params); |
|
state = initState.clone(); |
|
|
|
for (int i = 0; i<nIterations; i++) |
|
{ |
|
rng.fill( q, RNG::NORMAL, Scalar::all(0), Scalar::all(1) ); |
|
q = processNoiseCovSqrt*q; |
|
|
|
rng.fill( r, RNG::NORMAL, Scalar::all(0), Scalar::all(1) ); |
|
r = measurementNoiseCovSqrt*r; |
|
|
|
model->stateConversionFunction(state, u, q, state); |
|
model->measurementFunction(state, r, measurement); |
|
|
|
predictStateUKF = uncsentedKalmanFilter->predict(); |
|
correctStateUKF = uncsentedKalmanFilter->correct( measurement ); |
|
|
|
Mat errorUKF = state - correctStateUKF; |
|
|
|
for (int l = 0; l<4; l++) |
|
errors.at<double>(i, l) += pow( errorUKF.at<double>(l, 0), 2.0 ); |
|
|
|
} |
|
} |
|
|
|
errors = errors/100.0; |
|
sqrt( errors, errors ); |
|
|
|
double max_x1 = norm( errors.col(0), NORM_INF ); |
|
double max_x2 = norm( errors.col(1), NORM_INF ); |
|
double max_x3 = norm( errors.col(2), NORM_INF ); |
|
double max_x4 = norm( errors.col(3), NORM_INF ); |
|
|
|
ASSERT_GE( state_treshold, max_x1 ); |
|
ASSERT_GE( state_treshold, max_x2 ); |
|
ASSERT_GE( velocity_treshold, max_x3 ); |
|
ASSERT_GE( velocity_treshold, max_x4 ); |
|
} |
|
|
|
|
|
//In this test Unscented Kalman Filter are applied to the univariate nonstationary growth model (UNGM). |
|
//This model was used in example from "Unscented Kalman filtering for additive noise case: Augmented vs. non-augmented" |
|
//by Yuanxin Wu and Dewen Hu. |
|
class UnivariateNonstationaryGrowthModel: public UkfSystemModel |
|
{ |
|
|
|
public: |
|
void stateConversionFunction(const Mat& x_k, const Mat& u_k, const Mat& v_k, Mat& x_kplus1) |
|
{ |
|
double x = x_k.at<double>(0, 0); |
|
double n = u_k.at<double>(0, 0); |
|
double q = v_k.at<double>(0, 0); |
|
double u = u_k.at<double>(0, 0); |
|
|
|
double x1 = 0.5*x + 25*( x/(x*x + 1) ) + 8*cos( 1.2*(n-1) ) + q + u; |
|
x_kplus1.at<double>(0, 0) = x1; |
|
} |
|
void measurementFunction(const Mat& x_k, const Mat& n_k, Mat& z_k) |
|
{ |
|
double x = x_k.at<double>(0, 0); |
|
double r = n_k.at<double>(0, 0); |
|
|
|
double y = x*x/20.0 + r; |
|
z_k.at<double>(0, 0) = y; |
|
} |
|
}; |
|
|
|
TEST(UKF, DISABLED_ungm_mean_squared_error) |
|
{ |
|
const double alpha = 1.5; |
|
const double beta = 2.0; |
|
const double kappa = 0.0; |
|
|
|
const double mse_treshold = 0.5; |
|
const int nIterations = 500; // number of observed iterations |
|
|
|
int MP = 1; |
|
int DP = 1; |
|
int CP = 0; |
|
int type = CV_64F; |
|
|
|
Ptr<UnivariateNonstationaryGrowthModel> model( new UnivariateNonstationaryGrowthModel() ); |
|
UnscentedKalmanFilterParams params( DP, MP, CP, 0, 0, model ); |
|
|
|
Mat processNoiseCov = Mat::zeros( DP, DP, type ); |
|
processNoiseCov.at<double>(0, 0) = 1.0; |
|
Mat processNoiseCovSqrt = Mat::zeros( DP, DP, type ); |
|
sqrt( processNoiseCov, processNoiseCovSqrt ); |
|
|
|
Mat measurementNoiseCov = Mat::zeros( MP, MP, type ); |
|
measurementNoiseCov.at<double>(0, 0) = 1.0; |
|
Mat measurementNoiseCovSqrt = Mat::zeros( MP, MP, type ); |
|
sqrt( measurementNoiseCov, measurementNoiseCovSqrt ); |
|
|
|
Mat P = Mat::eye( DP, DP, type ); |
|
|
|
Mat state( DP, 1, type ); |
|
state.at<double>(0, 0) = 0.1; |
|
|
|
Mat initState = state.clone(); |
|
initState.at<double>(0, 0) = 0.0; |
|
|
|
params.errorCovInit = P; |
|
params.measurementNoiseCov = measurementNoiseCov; |
|
params.processNoiseCov = processNoiseCov; |
|
params.stateInit = initState.clone(); |
|
|
|
params.alpha = alpha; |
|
params.beta = beta; |
|
params.k = kappa; |
|
|
|
Mat correctStateAUKF( DP, 1, type ); |
|
|
|
Mat measurement( MP, 1, type ); |
|
Mat exactMeasurement( MP, 1, type ); |
|
|
|
Mat q( DP, 1, type ); |
|
Mat r( MP, 1, type ); |
|
|
|
Mat u( DP, 1, type ); |
|
Mat zero = Mat::zeros( MP, 1, type ); |
|
|
|
RNG rng( 216 ); |
|
|
|
double average_error = 0.0; |
|
for (int j = 0; j<1000; j++) |
|
{ |
|
cv::Ptr<UnscentedKalmanFilter> uncsentedKalmanFilter = createUnscentedKalmanFilter( params ); |
|
state.at<double>(0, 0) = 0.1; |
|
|
|
double mse = 0.0; |
|
for (int i = 0; i<nIterations; i++) |
|
{ |
|
rng.fill( q, RNG::NORMAL, Scalar::all(0), Scalar::all(1) ); |
|
rng.fill( r, RNG::NORMAL, Scalar::all(0), Scalar::all(1) ); |
|
q = processNoiseCovSqrt*q; |
|
r = measurementNoiseCovSqrt*r; |
|
|
|
u.at<double>(0, 0) = (double)i; |
|
model->stateConversionFunction(state, u, q, state); |
|
|
|
model->measurementFunction(state, zero, exactMeasurement); |
|
model->measurementFunction(state, r, measurement); |
|
|
|
uncsentedKalmanFilter->predict( u ); |
|
correctStateAUKF = uncsentedKalmanFilter->correct( measurement ); |
|
|
|
mse += pow( state.at<double>(0, 0) - correctStateAUKF.at<double>(0, 0), 2.0 ); |
|
} |
|
mse /= nIterations; |
|
average_error += mse; |
|
} |
|
average_error /= 1000.0; |
|
|
|
ASSERT_GE( mse_treshold, average_error ); |
|
}
|
|
|