You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
737 lines
25 KiB
737 lines
25 KiB
//M*////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
/****************************************************************************************\ |
|
* Very fast SAD-based (Sum-of-Absolute-Diffrences) stereo correspondence algorithm. * |
|
* Contributed by Kurt Konolige * |
|
\****************************************************************************************/ |
|
|
|
#include "precomp.hpp" |
|
#include <stdio.h> |
|
#include <limits> |
|
|
|
namespace cv |
|
{ |
|
|
|
struct StereoBinaryBMParams |
|
{ |
|
StereoBinaryBMParams(int _numDisparities = 64, int _SADWindowSize = 9) |
|
{ |
|
preFilterType = StereoBinaryBM::PREFILTER_XSOBEL; |
|
preFilterSize = 9; |
|
preFilterCap = 31; |
|
SADWindowSize = _SADWindowSize; |
|
minDisparity = 0; |
|
numDisparities = _numDisparities > 0 ? _numDisparities : 64; |
|
textureThreshold = 10; |
|
uniquenessRatio = 15; |
|
speckleRange = speckleWindowSize = 0; |
|
roi1 = roi2 = Rect(0, 0, 0, 0); |
|
disp12MaxDiff = -1; |
|
dispType = CV_16S; |
|
} |
|
|
|
int preFilterType; |
|
int preFilterSize; |
|
int preFilterCap; |
|
int SADWindowSize; |
|
int minDisparity; |
|
int numDisparities; |
|
int textureThreshold; |
|
int uniquenessRatio; |
|
int speckleRange; |
|
int speckleWindowSize; |
|
Rect roi1, roi2; |
|
int disp12MaxDiff; |
|
int dispType; |
|
}; |
|
|
|
static void prefilterNorm(const Mat& src, Mat& dst, int winsize, int ftzero, uchar* buf) |
|
{ |
|
int x, y, wsz2 = winsize / 2; |
|
int* vsum = (int*)alignPtr(buf + (wsz2 + 1)*sizeof(vsum[0]), 32); |
|
int scale_g = winsize*winsize / 8, scale_s = (1024 + scale_g) / (scale_g * 2); |
|
const int OFS = 256 * 5, TABSZ = OFS * 2 + 256; |
|
uchar tab[TABSZ]; |
|
const uchar* sptr = src.ptr(); |
|
int srcstep = (int)src.step; |
|
Size size = src.size(); |
|
|
|
scale_g *= scale_s; |
|
|
|
for (x = 0; x < TABSZ; x++) |
|
tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero * 2 : x - OFS + ftzero); |
|
|
|
for (x = 0; x < size.width; x++) |
|
vsum[x] = (ushort)(sptr[x] * (wsz2 + 2)); |
|
|
|
for (y = 1; y < wsz2; y++) |
|
{ |
|
for (x = 0; x < size.width; x++) |
|
vsum[x] = (ushort)(vsum[x] + sptr[srcstep*y + x]); |
|
} |
|
|
|
for (y = 0; y < size.height; y++) |
|
{ |
|
const uchar* top = sptr + srcstep*MAX(y - wsz2 - 1, 0); |
|
const uchar* bottom = sptr + srcstep*MIN(y + wsz2, size.height - 1); |
|
const uchar* prev = sptr + srcstep*MAX(y - 1, 0); |
|
const uchar* curr = sptr + srcstep*y; |
|
const uchar* next = sptr + srcstep*MIN(y + 1, size.height - 1); |
|
uchar* dptr = dst.ptr<uchar>(y); |
|
|
|
for (x = 0; x < size.width; x++) |
|
vsum[x] = (ushort)(vsum[x] + bottom[x] - top[x]); |
|
|
|
for (x = 0; x <= wsz2; x++) |
|
{ |
|
vsum[-x - 1] = vsum[0]; |
|
vsum[size.width + x] = vsum[size.width - 1]; |
|
} |
|
|
|
int sum = vsum[0] * (wsz2 + 1); |
|
for (x = 1; x <= wsz2; x++) |
|
sum += vsum[x]; |
|
|
|
int val = ((curr[0] * 5 + curr[1] + prev[0] + next[0])*scale_g - sum*scale_s) >> 10; |
|
dptr[0] = tab[val + OFS]; |
|
|
|
for (x = 1; x < size.width - 1; x++) |
|
{ |
|
sum += vsum[x + wsz2] - vsum[x - wsz2 - 1]; |
|
val = ((curr[x] * 4 + curr[x - 1] + curr[x + 1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10; |
|
dptr[x] = tab[val + OFS]; |
|
} |
|
|
|
sum += vsum[x + wsz2] - vsum[x - wsz2 - 1]; |
|
val = ((curr[x] * 5 + curr[x - 1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10; |
|
dptr[x] = tab[val + OFS]; |
|
} |
|
} |
|
|
|
static void |
|
prefilterXSobel(const Mat& src, Mat& dst, int ftzero) |
|
{ |
|
int x, y; |
|
const int OFS = 256 * 4, TABSZ = OFS * 2 + 256; |
|
uchar tab[TABSZ]; |
|
Size size = src.size(); |
|
|
|
for (x = 0; x < TABSZ; x++) |
|
tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero * 2 : x - OFS + ftzero); |
|
uchar val0 = tab[0 + OFS]; |
|
|
|
#if CV_SSE2 |
|
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2); |
|
#endif |
|
|
|
for (y = 0; y < size.height - 1; y += 2) |
|
{ |
|
const uchar* srow1 = src.ptr<uchar>(y); |
|
const uchar* srow0 = y > 0 ? srow1 - src.step : size.height > 1 ? srow1 + src.step : srow1; |
|
const uchar* srow2 = y < size.height - 1 ? srow1 + src.step : size.height > 1 ? srow1 - src.step : srow1; |
|
const uchar* srow3 = y < size.height - 2 ? srow1 + src.step * 2 : srow1; |
|
uchar* dptr0 = dst.ptr<uchar>(y); |
|
uchar* dptr1 = dptr0 + dst.step; |
|
|
|
dptr0[0] = dptr0[size.width - 1] = dptr1[0] = dptr1[size.width - 1] = val0; |
|
x = 1; |
|
|
|
#if CV_SSE2 |
|
if (useSIMD) |
|
{ |
|
__m128i z = _mm_setzero_si128(), ftz = _mm_set1_epi16((short)ftzero), |
|
ftz2 = _mm_set1_epi8(cv::saturate_cast<uchar>(ftzero * 2)); |
|
for (; x <= size.width - 9; x += 8) |
|
{ |
|
__m128i c0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow0 + x - 1)), z); |
|
__m128i c1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow1 + x - 1)), z); |
|
__m128i d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow0 + x + 1)), z); |
|
__m128i d1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow1 + x + 1)), z); |
|
|
|
d0 = _mm_sub_epi16(d0, c0); |
|
d1 = _mm_sub_epi16(d1, c1); |
|
|
|
__m128i c2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow2 + x - 1)), z); |
|
__m128i c3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow3 + x - 1)), z); |
|
__m128i d2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow2 + x + 1)), z); |
|
__m128i d3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow3 + x + 1)), z); |
|
|
|
d2 = _mm_sub_epi16(d2, c2); |
|
d3 = _mm_sub_epi16(d3, c3); |
|
|
|
__m128i v0 = _mm_add_epi16(d0, _mm_add_epi16(d2, _mm_add_epi16(d1, d1))); |
|
__m128i v1 = _mm_add_epi16(d1, _mm_add_epi16(d3, _mm_add_epi16(d2, d2))); |
|
v0 = _mm_packus_epi16(_mm_add_epi16(v0, ftz), _mm_add_epi16(v1, ftz)); |
|
v0 = _mm_min_epu8(v0, ftz2); |
|
|
|
_mm_storel_epi64((__m128i*)(dptr0 + x), v0); |
|
_mm_storel_epi64((__m128i*)(dptr1 + x), _mm_unpackhi_epi64(v0, v0)); |
|
} |
|
} |
|
#endif |
|
|
|
for (; x < size.width - 1; x++) |
|
{ |
|
int d0 = srow0[x + 1] - srow0[x - 1], d1 = srow1[x + 1] - srow1[x - 1], |
|
d2 = srow2[x + 1] - srow2[x - 1], d3 = srow3[x + 1] - srow3[x - 1]; |
|
int v0 = tab[d0 + d1 * 2 + d2 + OFS]; |
|
int v1 = tab[d1 + d2 * 2 + d3 + OFS]; |
|
dptr0[x] = (uchar)v0; |
|
dptr1[x] = (uchar)v1; |
|
} |
|
} |
|
|
|
for (; y < size.height; y++) |
|
{ |
|
uchar* dptr = dst.ptr<uchar>(y); |
|
for (x = 0; x < size.width; x++) |
|
dptr[x] = val0; |
|
} |
|
} |
|
|
|
static const int DISPARITY_SHIFT = 4; |
|
|
|
static void |
|
findStereoCorrespondenceBM(const Mat& left, const Mat& right, |
|
Mat& disp, Mat& cost, const StereoBinaryBMParams& state, |
|
uchar* buf, int _dy0, int _dy1) |
|
{ |
|
const int ALIGN = 16; |
|
int x, y, d; |
|
int wsz = state.SADWindowSize, wsz2 = wsz / 2; |
|
int dy0 = MIN(_dy0, wsz2 + 1), dy1 = MIN(_dy1, wsz2 + 1); |
|
int ndisp = state.numDisparities; |
|
int mindisp = state.minDisparity; |
|
int lofs = MAX(ndisp - 1 + mindisp, 0); |
|
int rofs = -MIN(ndisp - 1 + mindisp, 0); |
|
int width = left.cols, height = left.rows; |
|
int width1 = width - rofs - ndisp + 1; |
|
int ftzero = state.preFilterCap; |
|
int textureThreshold = state.textureThreshold; |
|
int uniquenessRatio = state.uniquenessRatio; |
|
short FILTERED = (short)((mindisp - 1) << DISPARITY_SHIFT); |
|
|
|
int *sad, *hsad0, *hsad, *hsad_sub, *htext; |
|
uchar *cbuf0, *cbuf; |
|
const uchar* lptr0 = left.ptr() + lofs; |
|
const uchar* rptr0 = right.ptr() + rofs; |
|
const uchar *lptr, *lptr_sub, *rptr; |
|
short* dptr = disp.ptr<short>(); |
|
int sstep = (int)left.step; |
|
int dstep = (int)(disp.step / sizeof(dptr[0])); |
|
int cstep = (height + dy0 + dy1)*ndisp; |
|
int costbuf = 0; |
|
int coststep = cost.data ? (int)(cost.step / sizeof(costbuf)) : 0; |
|
const int TABSZ = 256; |
|
uchar tab[TABSZ]; |
|
|
|
sad = (int*)alignPtr(buf + sizeof(sad[0]), ALIGN); |
|
hsad0 = (int*)alignPtr(sad + ndisp + 1 + dy0*ndisp, ALIGN); |
|
htext = (int*)alignPtr((int*)(hsad0 + (height + dy1)*ndisp) + wsz2 + 2, ALIGN); |
|
cbuf0 = (uchar*)alignPtr((uchar*)(htext + height + wsz2 + 2) + dy0*ndisp, ALIGN); |
|
|
|
for (x = 0; x < TABSZ; x++) |
|
tab[x] = (uchar)std::abs(x - ftzero); |
|
|
|
// initialize buffers |
|
memset(hsad0 - dy0*ndisp, 0, (height + dy0 + dy1)*ndisp*sizeof(hsad0[0])); |
|
memset(htext - wsz2 - 1, 0, (height + wsz + 1)*sizeof(htext[0])); |
|
|
|
for (x = -wsz2 - 1; x < wsz2; x++) |
|
{ |
|
hsad = hsad0 - dy0*ndisp; cbuf = cbuf0 + (x + wsz2 + 1)*cstep - dy0*ndisp; |
|
lptr = lptr0 + std::min(std::max(x, -lofs), width - lofs - 1) - dy0*sstep; |
|
rptr = rptr0 + std::min(std::max(x, -rofs), width - rofs - 1) - dy0*sstep; |
|
for (y = -dy0; y < height + dy1; y++, hsad += ndisp, cbuf += ndisp, lptr += sstep, rptr += sstep) |
|
{ |
|
int lval = lptr[0]; |
|
for (d = 0; d < ndisp; d++) |
|
{ |
|
int diff = std::abs(lval - rptr[d]); |
|
cbuf[d] = (uchar)diff; |
|
hsad[d] = (int)(hsad[d] + diff); |
|
} |
|
htext[y] += tab[lval]; |
|
} |
|
} |
|
|
|
// initialize the left and right borders of the disparity map |
|
for (y = 0; y < height; y++) |
|
{ |
|
for (x = 0; x < lofs; x++) |
|
dptr[y*dstep + x] = FILTERED; |
|
for (x = lofs + width1; x < width; x++) |
|
dptr[y*dstep + x] = FILTERED; |
|
} |
|
dptr += lofs; |
|
|
|
for (x = 0; x < width1; x++, dptr++) |
|
{ |
|
int* costptr = cost.data ? cost.ptr<int>() + lofs + x : &costbuf; |
|
int x0 = x - wsz2 - 1, x1 = x + wsz2; |
|
const uchar* cbuf_sub = cbuf0 + ((x0 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp; |
|
cbuf = cbuf0 + ((x1 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp; |
|
hsad = hsad0 - dy0*ndisp; |
|
lptr_sub = lptr0 + MIN(MAX(x0, -lofs), width - 1 - lofs) - dy0*sstep; |
|
lptr = lptr0 + MIN(MAX(x1, -lofs), width - 1 - lofs) - dy0*sstep; |
|
rptr = rptr0 + MIN(MAX(x1, -rofs), width - 1 - rofs) - dy0*sstep; |
|
|
|
for (y = -dy0; y < height + dy1; y++, cbuf += ndisp, cbuf_sub += ndisp, |
|
hsad += ndisp, lptr += sstep, lptr_sub += sstep, rptr += sstep) |
|
{ |
|
int lval = lptr[0]; |
|
for (d = 0; d < ndisp; d++) |
|
{ |
|
int diff = std::abs(lval - rptr[d]); |
|
cbuf[d] = (uchar)diff; |
|
hsad[d] = hsad[d] + diff - cbuf_sub[d]; |
|
} |
|
htext[y] += tab[lval] - tab[lptr_sub[0]]; |
|
} |
|
|
|
// fill borders |
|
for (y = dy1; y <= wsz2; y++) |
|
htext[height + y] = htext[height + dy1 - 1]; |
|
for (y = -wsz2 - 1; y < -dy0; y++) |
|
htext[y] = htext[-dy0]; |
|
|
|
// initialize sums |
|
int tsum = 0; |
|
{ |
|
for (d = 0; d < ndisp; d++) |
|
sad[d] = (int)(hsad0[d - ndisp*dy0] * (wsz2 + 2 - dy0)); |
|
|
|
hsad = hsad0 + (1 - dy0)*ndisp; |
|
for (y = 1 - dy0; y < wsz2; y++, hsad += ndisp) |
|
for (d = 0; d < ndisp; d++) |
|
sad[d] = (int)(sad[d] + hsad[d]); |
|
|
|
for (y = -wsz2 - 1; y < wsz2; y++) |
|
tsum += htext[y]; |
|
} |
|
// finally, start the real processing |
|
{ |
|
for (y = 0; y < height; y++) |
|
{ |
|
int minsad = INT_MAX, mind = -1; |
|
hsad = hsad0 + MIN(y + wsz2, height + dy1 - 1)*ndisp; |
|
hsad_sub = hsad0 + MAX(y - wsz2 - 1, -dy0)*ndisp; |
|
|
|
for (d = 0; d < ndisp; d++) |
|
{ |
|
int currsad = sad[d] + hsad[d] - hsad_sub[d]; |
|
sad[d] = currsad; |
|
if (currsad < minsad) |
|
{ |
|
minsad = currsad; |
|
mind = d; |
|
} |
|
} |
|
|
|
tsum += htext[y + wsz2] - htext[y - wsz2 - 1]; |
|
if (tsum < textureThreshold) |
|
{ |
|
dptr[y*dstep] = FILTERED; |
|
continue; |
|
} |
|
|
|
if (uniquenessRatio > 0) |
|
{ |
|
int thresh = minsad + (minsad * uniquenessRatio / 100); |
|
for (d = 0; d < ndisp; d++) |
|
{ |
|
if ((d < mind - 1 || d > mind + 1) && sad[d] <= thresh) |
|
break; |
|
} |
|
if (d < ndisp) |
|
{ |
|
dptr[y*dstep] = FILTERED; |
|
continue; |
|
} |
|
} |
|
|
|
{ |
|
sad[-1] = sad[1]; |
|
sad[ndisp] = sad[ndisp - 2]; |
|
int p = sad[mind + 1], n = sad[mind - 1]; |
|
d = p + n - 2 * sad[mind] + std::abs(p - n); |
|
dptr[y*dstep] = (short)(((ndisp - mind - 1 + mindisp) * 256 + (d != 0 ? (p - n) * 256 / d : 0) + 15) >> 4); |
|
costptr[y*coststep] = sad[mind]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
struct PrefilterInvoker : public ParallelLoopBody |
|
{ |
|
PrefilterInvoker(const Mat& left0, const Mat& right0, Mat& left, Mat& right, |
|
uchar* buf0, uchar* buf1, StereoBinaryBMParams* _state) |
|
{ |
|
imgs0[0] = &left0; imgs0[1] = &right0; |
|
imgs[0] = &left; imgs[1] = &right; |
|
buf[0] = buf0; buf[1] = buf1; |
|
state = _state; |
|
} |
|
|
|
void operator()(const Range& range) const |
|
{ |
|
for (int i = range.start; i < range.end; i++) |
|
{ |
|
if (state->preFilterType == StereoBinaryBM::PREFILTER_NORMALIZED_RESPONSE) |
|
prefilterNorm(*imgs0[i], *imgs[i], state->preFilterSize, state->preFilterCap, buf[i]); |
|
else |
|
prefilterXSobel(*imgs0[i], *imgs[i], state->preFilterCap); |
|
} |
|
} |
|
|
|
const Mat* imgs0[2]; |
|
Mat* imgs[2]; |
|
uchar* buf[2]; |
|
StereoBinaryBMParams* state; |
|
}; |
|
|
|
struct FindStereoCorrespInvoker : public ParallelLoopBody |
|
{ |
|
FindStereoCorrespInvoker(const Mat& _left, const Mat& _right, |
|
Mat& _disp, StereoBinaryBMParams* _state, |
|
int _nstripes, size_t _stripeBufSize, |
|
bool _useShorts, Rect _validDisparityRect, |
|
Mat& _slidingSumBuf, Mat& _cost) |
|
{ |
|
left = &_left; right = &_right; |
|
disp = &_disp; state = _state; |
|
nstripes = _nstripes; stripeBufSize = _stripeBufSize; |
|
useShorts = _useShorts; |
|
validDisparityRect = _validDisparityRect; |
|
slidingSumBuf = &_slidingSumBuf; |
|
cost = &_cost; |
|
} |
|
|
|
void operator()(const Range& range) const |
|
{ |
|
int cols = left->cols, rows = left->rows; |
|
int _row0 = std::min(cvRound(range.start * rows / nstripes), rows); |
|
int _row1 = std::min(cvRound(range.end * rows / nstripes), rows); |
|
uchar *ptr = slidingSumBuf->ptr() + range.start * stripeBufSize; |
|
int FILTERED = (state->minDisparity - 1) * 16; |
|
|
|
Rect roi = validDisparityRect & Rect(0, _row0, cols, _row1 - _row0); |
|
if (roi.height == 0) |
|
return; |
|
int row0 = roi.y; |
|
int row1 = roi.y + roi.height; |
|
|
|
Mat part; |
|
if (row0 > _row0) |
|
{ |
|
part = disp->rowRange(_row0, row0); |
|
part = Scalar::all(FILTERED); |
|
} |
|
if (_row1 > row1) |
|
{ |
|
part = disp->rowRange(row1, _row1); |
|
part = Scalar::all(FILTERED); |
|
} |
|
|
|
Mat left_i = left->rowRange(row0, row1); |
|
Mat right_i = right->rowRange(row0, row1); |
|
Mat disp_i = disp->rowRange(row0, row1); |
|
Mat cost_i = state->disp12MaxDiff >= 0 ? cost->rowRange(row0, row1) : Mat(); |
|
|
|
findStereoCorrespondenceBM(left_i, right_i, disp_i, cost_i, *state, ptr, row0, rows - row1); |
|
|
|
if (state->disp12MaxDiff >= 0) |
|
validateDisparity(disp_i, cost_i, state->minDisparity, state->numDisparities, state->disp12MaxDiff); |
|
|
|
if (roi.x > 0) |
|
{ |
|
part = disp_i.colRange(0, roi.x); |
|
part = Scalar::all(FILTERED); |
|
} |
|
if (roi.x + roi.width < cols) |
|
{ |
|
part = disp_i.colRange(roi.x + roi.width, cols); |
|
part = Scalar::all(FILTERED); |
|
} |
|
} |
|
|
|
protected: |
|
const Mat *left, *right; |
|
Mat* disp, *slidingSumBuf, *cost; |
|
StereoBinaryBMParams *state; |
|
|
|
int nstripes; |
|
size_t stripeBufSize; |
|
bool useShorts; |
|
Rect validDisparityRect; |
|
}; |
|
|
|
class StereoBinaryBMImpl : public StereoBinaryBM |
|
{ |
|
public: |
|
StereoBinaryBMImpl() |
|
{ |
|
params = StereoBinaryBMParams(); |
|
} |
|
|
|
StereoBinaryBMImpl(int _numDisparities, int _SADWindowSize) |
|
{ |
|
params = StereoBinaryBMParams(_numDisparities, _SADWindowSize); |
|
} |
|
|
|
void compute(InputArray leftarr, InputArray rightarr, OutputArray disparr) |
|
{ |
|
int dtype = disparr.fixedType() ? disparr.type() : params.dispType; |
|
Size leftsize = leftarr.size(); |
|
|
|
if (leftarr.size() != rightarr.size()) |
|
CV_Error(Error::StsUnmatchedSizes, "All the images must have the same size"); |
|
|
|
if (leftarr.type() != CV_8UC1 || rightarr.type() != CV_8UC1) |
|
CV_Error(Error::StsUnsupportedFormat, "Both input images must have CV_8UC1"); |
|
|
|
if (dtype != CV_16SC1 && dtype != CV_32FC1) |
|
CV_Error(Error::StsUnsupportedFormat, "Disparity image must have CV_16SC1 or CV_32FC1 format"); |
|
|
|
if (params.preFilterType != PREFILTER_NORMALIZED_RESPONSE && |
|
params.preFilterType != PREFILTER_XSOBEL) |
|
CV_Error(Error::StsOutOfRange, "preFilterType must be = CV_STEREO_BM_NORMALIZED_RESPONSE"); |
|
|
|
if (params.preFilterSize < 5 || params.preFilterSize > 255 || params.preFilterSize % 2 == 0) |
|
CV_Error(Error::StsOutOfRange, "preFilterSize must be odd and be within 5..255"); |
|
|
|
if (params.preFilterCap < 1 || params.preFilterCap > 63) |
|
CV_Error(Error::StsOutOfRange, "preFilterCap must be within 1..63"); |
|
|
|
if (params.SADWindowSize < 5 || params.SADWindowSize > 255 || params.SADWindowSize % 2 == 0 || |
|
params.SADWindowSize >= std::min(leftsize.width, leftsize.height)) |
|
CV_Error(Error::StsOutOfRange, "SADWindowSize must be odd, be within 5..255 and be not larger than image width or height"); |
|
|
|
if (params.numDisparities <= 0 || params.numDisparities % 16 != 0) |
|
CV_Error(Error::StsOutOfRange, "numDisparities must be positive and divisble by 16"); |
|
|
|
if (params.textureThreshold < 0) |
|
CV_Error(Error::StsOutOfRange, "texture threshold must be non-negative"); |
|
|
|
if (params.uniquenessRatio < 0) |
|
CV_Error(Error::StsOutOfRange, "uniqueness ratio must be non-negative"); |
|
|
|
int FILTERED = (params.minDisparity - 1) << DISPARITY_SHIFT; |
|
|
|
|
|
Mat left0 = leftarr.getMat(), right0 = rightarr.getMat(); |
|
disparr.create(left0.size(), dtype); |
|
Mat disp0 = disparr.getMat(); |
|
|
|
preFilteredImg0.create(left0.size(), CV_8U); |
|
preFilteredImg1.create(left0.size(), CV_8U); |
|
cost.create(left0.size(), CV_16S); |
|
|
|
Mat left = preFilteredImg0, right = preFilteredImg1; |
|
|
|
int mindisp = params.minDisparity; |
|
int ndisp = params.numDisparities; |
|
|
|
int width = left0.cols; |
|
int height = left0.rows; |
|
int lofs = std::max(ndisp - 1 + mindisp, 0); |
|
int rofs = -std::min(ndisp - 1 + mindisp, 0); |
|
int width1 = width - rofs - ndisp + 1; |
|
|
|
if (lofs >= width || rofs >= width || width1 < 1) |
|
{ |
|
disp0 = Scalar::all(FILTERED * (disp0.type() < CV_32F ? 1 : 1. / (1 << DISPARITY_SHIFT))); |
|
return; |
|
} |
|
|
|
Mat disp = disp0; |
|
if (dtype == CV_32F) |
|
{ |
|
dispbuf.create(disp0.size(), CV_16S); |
|
disp = dispbuf; |
|
} |
|
|
|
int wsz = params.SADWindowSize; |
|
int bufSize0 = (int)((ndisp + 2)*sizeof(int)); |
|
bufSize0 += (int)((height + wsz + 2)*ndisp*sizeof(int)); |
|
bufSize0 += (int)((height + wsz + 2)*sizeof(int)); |
|
bufSize0 += (int)((height + wsz + 2)*ndisp*(wsz + 2)*sizeof(uchar) + 256); |
|
|
|
int bufSize1 = (int)((width + params.preFilterSize + 2) * sizeof(int) + 256); |
|
int bufSize2 = 0; |
|
if (params.speckleRange >= 0 && params.speckleWindowSize > 0) |
|
bufSize2 = width*height*(sizeof(Point_<short>) + sizeof(int) + sizeof(uchar)); |
|
|
|
#if CV_SSE2 |
|
bool useShorts = params.preFilterCap <= 31 && params.SADWindowSize <= 21 && checkHardwareSupport(CV_CPU_SSE2); |
|
#else |
|
const bool useShorts = false; |
|
#endif |
|
|
|
const double SAD_overhead_coeff = 10.0; |
|
double N0 = 8000000 / (useShorts ? 1 : 4); // approx tbb's min number instructions reasonable for one thread |
|
double maxStripeSize = std::min(std::max(N0 / (width * ndisp), (wsz - 1) * SAD_overhead_coeff), (double)height); |
|
int nstripes = cvCeil(height / maxStripeSize); |
|
int bufSize = std::max(bufSize0 * nstripes, std::max(bufSize1 * 2, bufSize2)); |
|
|
|
if (slidingSumBuf.cols < bufSize) |
|
slidingSumBuf.create(1, bufSize, CV_8U); |
|
|
|
uchar *_buf = slidingSumBuf.ptr(); |
|
|
|
parallel_for_(Range(0, 2), PrefilterInvoker(left0, right0, left, right, _buf, _buf + bufSize1, ¶ms), 1); |
|
|
|
Rect validDisparityRect(0, 0, width, height), R1 = params.roi1, R2 = params.roi2; |
|
validDisparityRect = getValidDisparityROI(R1.area() > 0 ? Rect(0, 0, width, height) : validDisparityRect, |
|
R2.area() > 0 ? Rect(0, 0, width, height) : validDisparityRect, |
|
params.minDisparity, params.numDisparities, |
|
params.SADWindowSize); |
|
|
|
parallel_for_(Range(0, nstripes), |
|
FindStereoCorrespInvoker(left, right, disp, ¶ms, nstripes, |
|
bufSize0, useShorts, validDisparityRect, |
|
slidingSumBuf, cost)); |
|
|
|
if (params.speckleRange >= 0 && params.speckleWindowSize > 0) |
|
filterSpeckles(disp, FILTERED, params.speckleWindowSize, params.speckleRange, slidingSumBuf); |
|
|
|
if (disp0.data != disp.data) |
|
disp.convertTo(disp0, disp0.type(), 1. / (1 << DISPARITY_SHIFT), 0); |
|
} |
|
|
|
int getMinDisparity() const { return params.minDisparity; } |
|
void setMinDisparity(int minDisparity) { params.minDisparity = minDisparity; } |
|
|
|
int getNumDisparities() const { return params.numDisparities; } |
|
void setNumDisparities(int numDisparities) { params.numDisparities = numDisparities; } |
|
|
|
int getBlockSize() const { return params.SADWindowSize; } |
|
void setBlockSize(int blockSize) { params.SADWindowSize = blockSize; } |
|
|
|
int getSpeckleWindowSize() const { return params.speckleWindowSize; } |
|
void setSpeckleWindowSize(int speckleWindowSize) { params.speckleWindowSize = speckleWindowSize; } |
|
|
|
int getSpeckleRange() const { return params.speckleRange; } |
|
void setSpeckleRange(int speckleRange) { params.speckleRange = speckleRange; } |
|
|
|
int getDisp12MaxDiff() const { return params.disp12MaxDiff; } |
|
void setDisp12MaxDiff(int disp12MaxDiff) { params.disp12MaxDiff = disp12MaxDiff; } |
|
|
|
int getPreFilterType() const { return params.preFilterType; } |
|
void setPreFilterType(int preFilterType) { params.preFilterType = preFilterType; } |
|
|
|
int getPreFilterSize() const { return params.preFilterSize; } |
|
void setPreFilterSize(int preFilterSize) { params.preFilterSize = preFilterSize; } |
|
|
|
int getPreFilterCap() const { return params.preFilterCap; } |
|
void setPreFilterCap(int preFilterCap) { params.preFilterCap = preFilterCap; } |
|
|
|
int getTextureThreshold() const { return params.textureThreshold; } |
|
void setTextureThreshold(int textureThreshold) { params.textureThreshold = textureThreshold; } |
|
|
|
int getUniquenessRatio() const { return params.uniquenessRatio; } |
|
void setUniquenessRatio(int uniquenessRatio) { params.uniquenessRatio = uniquenessRatio; } |
|
|
|
int getSmallerBlockSize() const { return 0; } |
|
void setSmallerBlockSize(int) {} |
|
|
|
Rect getROI1() const { return params.roi1; } |
|
void setROI1(Rect roi1) { params.roi1 = roi1; } |
|
|
|
Rect getROI2() const { return params.roi2; } |
|
void setROI2(Rect roi2) { params.roi2 = roi2; } |
|
|
|
void write(FileStorage& fs) const |
|
{ |
|
fs << "name" << name_ |
|
<< "minDisparity" << params.minDisparity |
|
<< "numDisparities" << params.numDisparities |
|
<< "blockSize" << params.SADWindowSize |
|
<< "speckleWindowSize" << params.speckleWindowSize |
|
<< "speckleRange" << params.speckleRange |
|
<< "disp12MaxDiff" << params.disp12MaxDiff |
|
<< "preFilterType" << params.preFilterType |
|
<< "preFilterSize" << params.preFilterSize |
|
<< "preFilterCap" << params.preFilterCap |
|
<< "textureThreshold" << params.textureThreshold |
|
<< "uniquenessRatio" << params.uniquenessRatio; |
|
} |
|
|
|
void read(const FileNode& fn) |
|
{ |
|
FileNode n = fn["name"]; |
|
CV_Assert(n.isString() && String(n) == name_); |
|
params.minDisparity = (int)fn["minDisparity"]; |
|
params.numDisparities = (int)fn["numDisparities"]; |
|
params.SADWindowSize = (int)fn["blockSize"]; |
|
params.speckleWindowSize = (int)fn["speckleWindowSize"]; |
|
params.speckleRange = (int)fn["speckleRange"]; |
|
params.disp12MaxDiff = (int)fn["disp12MaxDiff"]; |
|
params.preFilterType = (int)fn["preFilterType"]; |
|
params.preFilterSize = (int)fn["preFilterSize"]; |
|
params.preFilterCap = (int)fn["preFilterCap"]; |
|
params.textureThreshold = (int)fn["textureThreshold"]; |
|
params.uniquenessRatio = (int)fn["uniquenessRatio"]; |
|
params.roi1 = params.roi2 = Rect(); |
|
} |
|
|
|
StereoBinaryBMParams params; |
|
Mat preFilteredImg0, preFilteredImg1, cost, dispbuf; |
|
Mat slidingSumBuf; |
|
|
|
static const char* name_; |
|
}; |
|
|
|
const char* StereoBinaryBMImpl::name_ = "StereoMatcher.BM"; |
|
|
|
Ptr<StereoBinaryBM> StereoBinaryBM::create(int _numDisparities, int _SADWindowSize) |
|
{ |
|
return makePtr<StereoBinaryBMImpl>(_numDisparities, _SADWindowSize); |
|
} |
|
|
|
} |
|
|
|
/* End of file. */ |
|
|
|
|