You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
420 lines
14 KiB
420 lines
14 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/core/utility.hpp" |
|
#include "opencl_kernels_optflow.hpp" |
|
|
|
namespace cv { |
|
namespace motempl { |
|
|
|
using std::vector; |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_updateMotionHistory( InputArray _silhouette, InputOutputArray _mhi, |
|
float timestamp, float delbound ) |
|
{ |
|
ocl::Kernel k("updateMotionHistory", ocl::video::updatemotionhistory_oclsrc); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat silh = _silhouette.getUMat(), mhi = _mhi.getUMat(); |
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(silh), ocl::KernelArg::ReadWrite(mhi), |
|
timestamp, delbound); |
|
|
|
size_t globalsize[2] = { silh.cols, silh.rows }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
#endif |
|
|
|
void updateMotionHistory( InputArray _silhouette, InputOutputArray _mhi, |
|
double timestamp, double duration ) |
|
{ |
|
CV_Assert( _silhouette.type() == CV_8UC1 && _mhi.type() == CV_32FC1 ); |
|
CV_Assert( _silhouette.sameSize(_mhi) ); |
|
|
|
float ts = (float)timestamp; |
|
float delbound = (float)(timestamp - duration); |
|
|
|
CV_OCL_RUN(_mhi.isUMat() && _mhi.dims() <= 2, |
|
ocl_updateMotionHistory(_silhouette, _mhi, ts, delbound)) |
|
|
|
Mat silh = _silhouette.getMat(), mhi = _mhi.getMat(); |
|
Size size = silh.size(); |
|
#if defined(HAVE_IPP) |
|
int silhstep = (int)silh.step, mhistep = (int)mhi.step; |
|
#endif |
|
|
|
if( silh.isContinuous() && mhi.isContinuous() ) |
|
{ |
|
size.width *= size.height; |
|
size.height = 1; |
|
#if defined(HAVE_IPP) |
|
silhstep = (int)silh.total(); |
|
mhistep = (int)mhi.total() * sizeof(Ipp32f); |
|
#endif |
|
} |
|
|
|
#if defined(HAVE_IPP) |
|
IppStatus status = ippiUpdateMotionHistory_8u32f_C1IR((const Ipp8u *)silh.data, silhstep, (Ipp32f *)mhi.data, mhistep, |
|
ippiSize(size.width, size.height), (Ipp32f)timestamp, (Ipp32f)duration); |
|
if (status >= 0) |
|
return; |
|
#endif |
|
|
|
#if CV_SSE2 |
|
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2); |
|
#endif |
|
|
|
for(int y = 0; y < size.height; y++ ) |
|
{ |
|
const uchar* silhData = silh.ptr<uchar>(y); |
|
float* mhiData = mhi.ptr<float>(y); |
|
int x = 0; |
|
|
|
#if CV_SSE2 |
|
if( useSIMD ) |
|
{ |
|
__m128 ts4 = _mm_set1_ps(ts), db4 = _mm_set1_ps(delbound); |
|
for( ; x <= size.width - 8; x += 8 ) |
|
{ |
|
__m128i z = _mm_setzero_si128(); |
|
__m128i s = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(silhData + x)), z); |
|
__m128 s0 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(s, z)), s1 = _mm_cvtepi32_ps(_mm_unpackhi_epi16(s, z)); |
|
__m128 v0 = _mm_loadu_ps(mhiData + x), v1 = _mm_loadu_ps(mhiData + x + 4); |
|
__m128 fz = _mm_setzero_ps(); |
|
|
|
v0 = _mm_and_ps(v0, _mm_cmpge_ps(v0, db4)); |
|
v1 = _mm_and_ps(v1, _mm_cmpge_ps(v1, db4)); |
|
|
|
__m128 m0 = _mm_and_ps(_mm_xor_ps(v0, ts4), _mm_cmpneq_ps(s0, fz)); |
|
__m128 m1 = _mm_and_ps(_mm_xor_ps(v1, ts4), _mm_cmpneq_ps(s1, fz)); |
|
|
|
v0 = _mm_xor_ps(v0, m0); |
|
v1 = _mm_xor_ps(v1, m1); |
|
|
|
_mm_storeu_ps(mhiData + x, v0); |
|
_mm_storeu_ps(mhiData + x + 4, v1); |
|
} |
|
} |
|
#endif |
|
|
|
for( ; x < size.width; x++ ) |
|
{ |
|
float val = mhiData[x]; |
|
val = silhData[x] ? ts : val < delbound ? 0 : val; |
|
mhiData[x] = val; |
|
} |
|
} |
|
} |
|
|
|
|
|
void calcMotionGradient( InputArray _mhi, OutputArray _mask, |
|
OutputArray _orientation, |
|
double delta1, double delta2, |
|
int aperture_size ) |
|
{ |
|
static int runcase = 0; runcase++; |
|
|
|
Mat mhi = _mhi.getMat(); |
|
Size size = mhi.size(); |
|
|
|
_mask.create(size, CV_8U); |
|
_orientation.create(size, CV_32F); |
|
|
|
Mat mask = _mask.getMat(); |
|
Mat orient = _orientation.getMat(); |
|
|
|
if( aperture_size < 3 || aperture_size > 7 || (aperture_size & 1) == 0 ) |
|
CV_Error( Error::StsOutOfRange, "aperture_size must be 3, 5 or 7" ); |
|
|
|
if( delta1 <= 0 || delta2 <= 0 ) |
|
CV_Error( Error::StsOutOfRange, "both delta's must be positive" ); |
|
|
|
if( mhi.type() != CV_32FC1 ) |
|
CV_Error( Error::StsUnsupportedFormat, |
|
"MHI must be single-channel floating-point images" ); |
|
|
|
if( orient.data == mhi.data ) |
|
{ |
|
_orientation.release(); |
|
_orientation.create(size, CV_32F); |
|
orient = _orientation.getMat(); |
|
} |
|
|
|
if( delta1 > delta2 ) |
|
std::swap(delta1, delta2); |
|
|
|
float gradient_epsilon = 1e-4f * aperture_size * aperture_size; |
|
float min_delta = (float)delta1; |
|
float max_delta = (float)delta2; |
|
|
|
Mat dX_min, dY_max; |
|
|
|
// calc Dx and Dy |
|
Sobel( mhi, dX_min, CV_32F, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE ); |
|
Sobel( mhi, dY_max, CV_32F, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE ); |
|
|
|
int x, y; |
|
|
|
if( mhi.isContinuous() && orient.isContinuous() && mask.isContinuous() ) |
|
{ |
|
size.width *= size.height; |
|
size.height = 1; |
|
} |
|
|
|
// calc gradient |
|
for( y = 0; y < size.height; y++ ) |
|
{ |
|
const float* dX_min_row = dX_min.ptr<float>(y); |
|
const float* dY_max_row = dY_max.ptr<float>(y); |
|
float* orient_row = orient.ptr<float>(y); |
|
uchar* mask_row = mask.ptr<uchar>(y); |
|
|
|
hal::fastAtan2(dY_max_row, dX_min_row, orient_row, size.width, true); |
|
|
|
// make orientation zero where the gradient is very small |
|
for( x = 0; x < size.width; x++ ) |
|
{ |
|
float dY = dY_max_row[x]; |
|
float dX = dX_min_row[x]; |
|
|
|
if( std::abs(dX) < gradient_epsilon && std::abs(dY) < gradient_epsilon ) |
|
{ |
|
mask_row[x] = (uchar)0; |
|
orient_row[x] = 0.f; |
|
} |
|
else |
|
mask_row[x] = (uchar)1; |
|
} |
|
} |
|
|
|
erode( mhi, dX_min, noArray(), Point(-1,-1), (aperture_size-1)/2, BORDER_REPLICATE ); |
|
dilate( mhi, dY_max, noArray(), Point(-1,-1), (aperture_size-1)/2, BORDER_REPLICATE ); |
|
|
|
// mask off pixels which have little motion difference in their neighborhood |
|
for( y = 0; y < size.height; y++ ) |
|
{ |
|
const float* dX_min_row = dX_min.ptr<float>(y); |
|
const float* dY_max_row = dY_max.ptr<float>(y); |
|
float* orient_row = orient.ptr<float>(y); |
|
uchar* mask_row = mask.ptr<uchar>(y); |
|
|
|
for( x = 0; x < size.width; x++ ) |
|
{ |
|
float d0 = dY_max_row[x] - dX_min_row[x]; |
|
|
|
if( mask_row[x] == 0 || d0 < min_delta || max_delta < d0 ) |
|
{ |
|
mask_row[x] = (uchar)0; |
|
orient_row[x] = 0.f; |
|
} |
|
} |
|
} |
|
} |
|
|
|
double calcGlobalOrientation( InputArray _orientation, InputArray _mask, |
|
InputArray _mhi, double /*timestamp*/, |
|
double duration ) |
|
{ |
|
Mat orient = _orientation.getMat(), mask = _mask.getMat(), mhi = _mhi.getMat(); |
|
Size size = mhi.size(); |
|
|
|
CV_Assert( mask.type() == CV_8U && orient.type() == CV_32F && mhi.type() == CV_32F ); |
|
CV_Assert( mask.size() == size && orient.size() == size ); |
|
CV_Assert( duration > 0 ); |
|
|
|
int histSize = 12; |
|
float _ranges[] = { 0.f, 360.f }; |
|
const float* ranges = _ranges; |
|
Mat hist; |
|
|
|
calcHist(&orient, 1, 0, mask, hist, 1, &histSize, &ranges); |
|
|
|
// find the maximum index (the dominant orientation) |
|
Point baseOrientPt; |
|
minMaxLoc(hist, 0, 0, 0, &baseOrientPt); |
|
float fbaseOrient = (baseOrientPt.x + baseOrientPt.y)*360.f/histSize; |
|
|
|
// override timestamp with the maximum value in MHI |
|
double timestamp = 0; |
|
minMaxLoc( mhi, 0, ×tamp, 0, 0, mask ); |
|
|
|
// find the shift relative to the dominant orientation as weighted sum of relative angles |
|
float a = (float)(254. / 255. / duration); |
|
float b = (float)(1. - timestamp * a); |
|
float delbound = (float)(timestamp - duration); |
|
|
|
if( mhi.isContinuous() && mask.isContinuous() && orient.isContinuous() ) |
|
{ |
|
size.width *= size.height; |
|
size.height = 1; |
|
} |
|
|
|
/* |
|
a = 254/(255*dt) |
|
b = 1 - t*a = 1 - 254*t/(255*dur) = |
|
(255*dt - 254*t)/(255*dt) = |
|
(dt - (t - dt)*254)/(255*dt); |
|
-------------------------------------------------------- |
|
ax + b = 254*x/(255*dt) + (dt - (t - dt)*254)/(255*dt) = |
|
(254*x + dt - (t - dt)*254)/(255*dt) = |
|
((x - (t - dt))*254 + dt)/(255*dt) = |
|
(((x - (t - dt))/dt)*254 + 1)/255 = (((x - low_time)/dt)*254 + 1)/255 |
|
*/ |
|
float shiftOrient = 0, shiftWeight = 0; |
|
for( int y = 0; y < size.height; y++ ) |
|
{ |
|
const float* mhiptr = mhi.ptr<float>(y); |
|
const float* oriptr = orient.ptr<float>(y); |
|
const uchar* maskptr = mask.ptr<uchar>(y); |
|
|
|
for( int x = 0; x < size.width; x++ ) |
|
{ |
|
if( maskptr[x] != 0 && mhiptr[x] > delbound ) |
|
{ |
|
/* |
|
orient in 0..360, base_orient in 0..360 |
|
-> (rel_angle = orient - base_orient) in -360..360. |
|
rel_angle is translated to -180..180 |
|
*/ |
|
float weight = mhiptr[x] * a + b; |
|
float relAngle = oriptr[x] - fbaseOrient; |
|
|
|
relAngle += (relAngle < -180 ? 360 : 0); |
|
relAngle += (relAngle > 180 ? -360 : 0); |
|
|
|
if( fabs(relAngle) < 45 ) |
|
{ |
|
shiftOrient += weight * relAngle; |
|
shiftWeight += weight; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// add the dominant orientation and the relative shift |
|
if( shiftWeight == 0 ) |
|
shiftWeight = 0.01f; |
|
|
|
fbaseOrient += shiftOrient / shiftWeight; |
|
fbaseOrient -= (fbaseOrient < 360 ? 0 : 360); |
|
fbaseOrient += (fbaseOrient >= 0 ? 0 : 360); |
|
|
|
return fbaseOrient; |
|
} |
|
|
|
|
|
void segmentMotion(InputArray _mhi, OutputArray _segmask, |
|
vector<Rect>& boundingRects, |
|
double timestamp, double segThresh) |
|
{ |
|
Mat mhi = _mhi.getMat(); |
|
|
|
_segmask.create(mhi.size(), CV_32F); |
|
Mat segmask = _segmask.getMat(); |
|
segmask = Scalar::all(0); |
|
|
|
CV_Assert( mhi.type() == CV_32F ); |
|
CV_Assert( segThresh >= 0 ); |
|
|
|
Mat mask = Mat::zeros( mhi.rows + 2, mhi.cols + 2, CV_8UC1 ); |
|
|
|
int x, y; |
|
|
|
// protect zero mhi pixels from floodfill. |
|
for( y = 0; y < mhi.rows; y++ ) |
|
{ |
|
const float* mhiptr = mhi.ptr<float>(y); |
|
uchar* maskptr = mask.ptr<uchar>(y+1) + 1; |
|
|
|
for( x = 0; x < mhi.cols; x++ ) |
|
{ |
|
if( mhiptr[x] == 0 ) |
|
maskptr[x] = 1; |
|
} |
|
} |
|
|
|
float ts = (float)timestamp; |
|
float comp_idx = 1.f; |
|
|
|
for( y = 0; y < mhi.rows; y++ ) |
|
{ |
|
float* mhiptr = mhi.ptr<float>(y); |
|
uchar* maskptr = mask.ptr<uchar>(y+1) + 1; |
|
|
|
for( x = 0; x < mhi.cols; x++ ) |
|
{ |
|
if( mhiptr[x] == ts && maskptr[x] == 0 ) |
|
{ |
|
Rect cc; |
|
floodFill( mhi, mask, Point(x,y), Scalar::all(0), |
|
&cc, Scalar::all(segThresh), Scalar::all(segThresh), |
|
FLOODFILL_MASK_ONLY + 2*256 + 4 ); |
|
|
|
for( int y1 = 0; y1 < cc.height; y1++ ) |
|
{ |
|
float* segmaskptr = segmask.ptr<float>(cc.y + y1) + cc.x; |
|
uchar* maskptr1 = mask.ptr<uchar>(cc.y + y1 + 1) + cc.x + 1; |
|
|
|
for( int x1 = 0; x1 < cc.width; x1++ ) |
|
{ |
|
if( maskptr1[x1] > 1 ) |
|
{ |
|
maskptr1[x1] = 1; |
|
segmaskptr[x1] = comp_idx; |
|
} |
|
} |
|
} |
|
comp_idx += 1.f; |
|
boundingRects.push_back(cc); |
|
} |
|
} |
|
} |
|
} |
|
|
|
} |
|
} |
|
|
|
/* End of file. */
|
|
|