Repository for OpenCV's extra modules
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

420 lines
14 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/core/utility.hpp"
#include "opencl_kernels_optflow.hpp"
namespace cv {
namespace motempl {
using std::vector;
#ifdef HAVE_OPENCL
static bool ocl_updateMotionHistory( InputArray _silhouette, InputOutputArray _mhi,
float timestamp, float delbound )
{
ocl::Kernel k("updateMotionHistory", ocl::video::updatemotionhistory_oclsrc);
if (k.empty())
return false;
UMat silh = _silhouette.getUMat(), mhi = _mhi.getUMat();
k.args(ocl::KernelArg::ReadOnlyNoSize(silh), ocl::KernelArg::ReadWrite(mhi),
timestamp, delbound);
size_t globalsize[2] = { silh.cols, silh.rows };
return k.run(2, globalsize, NULL, false);
}
#endif
void updateMotionHistory( InputArray _silhouette, InputOutputArray _mhi,
double timestamp, double duration )
{
CV_Assert( _silhouette.type() == CV_8UC1 && _mhi.type() == CV_32FC1 );
CV_Assert( _silhouette.sameSize(_mhi) );
float ts = (float)timestamp;
float delbound = (float)(timestamp - duration);
CV_OCL_RUN(_mhi.isUMat() && _mhi.dims() <= 2,
ocl_updateMotionHistory(_silhouette, _mhi, ts, delbound))
Mat silh = _silhouette.getMat(), mhi = _mhi.getMat();
Size size = silh.size();
#if defined(HAVE_IPP)
int silhstep = (int)silh.step, mhistep = (int)mhi.step;
#endif
if( silh.isContinuous() && mhi.isContinuous() )
{
size.width *= size.height;
size.height = 1;
#if defined(HAVE_IPP)
silhstep = (int)silh.total();
mhistep = (int)mhi.total() * sizeof(Ipp32f);
#endif
}
#if defined(HAVE_IPP)
IppStatus status = ippiUpdateMotionHistory_8u32f_C1IR((const Ipp8u *)silh.data, silhstep, (Ipp32f *)mhi.data, mhistep,
ippiSize(size.width, size.height), (Ipp32f)timestamp, (Ipp32f)duration);
if (status >= 0)
return;
#endif
#if CV_SSE2
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
#endif
for(int y = 0; y < size.height; y++ )
{
const uchar* silhData = silh.ptr<uchar>(y);
float* mhiData = mhi.ptr<float>(y);
int x = 0;
#if CV_SSE2
if( useSIMD )
{
__m128 ts4 = _mm_set1_ps(ts), db4 = _mm_set1_ps(delbound);
for( ; x <= size.width - 8; x += 8 )
{
__m128i z = _mm_setzero_si128();
__m128i s = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(silhData + x)), z);
__m128 s0 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(s, z)), s1 = _mm_cvtepi32_ps(_mm_unpackhi_epi16(s, z));
__m128 v0 = _mm_loadu_ps(mhiData + x), v1 = _mm_loadu_ps(mhiData + x + 4);
__m128 fz = _mm_setzero_ps();
v0 = _mm_and_ps(v0, _mm_cmpge_ps(v0, db4));
v1 = _mm_and_ps(v1, _mm_cmpge_ps(v1, db4));
__m128 m0 = _mm_and_ps(_mm_xor_ps(v0, ts4), _mm_cmpneq_ps(s0, fz));
__m128 m1 = _mm_and_ps(_mm_xor_ps(v1, ts4), _mm_cmpneq_ps(s1, fz));
v0 = _mm_xor_ps(v0, m0);
v1 = _mm_xor_ps(v1, m1);
_mm_storeu_ps(mhiData + x, v0);
_mm_storeu_ps(mhiData + x + 4, v1);
}
}
#endif
for( ; x < size.width; x++ )
{
float val = mhiData[x];
val = silhData[x] ? ts : val < delbound ? 0 : val;
mhiData[x] = val;
}
}
}
void calcMotionGradient( InputArray _mhi, OutputArray _mask,
OutputArray _orientation,
double delta1, double delta2,
int aperture_size )
{
static int runcase = 0; runcase++;
Mat mhi = _mhi.getMat();
Size size = mhi.size();
_mask.create(size, CV_8U);
_orientation.create(size, CV_32F);
Mat mask = _mask.getMat();
Mat orient = _orientation.getMat();
if( aperture_size < 3 || aperture_size > 7 || (aperture_size & 1) == 0 )
CV_Error( Error::StsOutOfRange, "aperture_size must be 3, 5 or 7" );
if( delta1 <= 0 || delta2 <= 0 )
CV_Error( Error::StsOutOfRange, "both delta's must be positive" );
if( mhi.type() != CV_32FC1 )
CV_Error( Error::StsUnsupportedFormat,
"MHI must be single-channel floating-point images" );
if( orient.data == mhi.data )
{
_orientation.release();
_orientation.create(size, CV_32F);
orient = _orientation.getMat();
}
if( delta1 > delta2 )
std::swap(delta1, delta2);
float gradient_epsilon = 1e-4f * aperture_size * aperture_size;
float min_delta = (float)delta1;
float max_delta = (float)delta2;
Mat dX_min, dY_max;
// calc Dx and Dy
Sobel( mhi, dX_min, CV_32F, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE );
Sobel( mhi, dY_max, CV_32F, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE );
int x, y;
if( mhi.isContinuous() && orient.isContinuous() && mask.isContinuous() )
{
size.width *= size.height;
size.height = 1;
}
// calc gradient
for( y = 0; y < size.height; y++ )
{
const float* dX_min_row = dX_min.ptr<float>(y);
const float* dY_max_row = dY_max.ptr<float>(y);
float* orient_row = orient.ptr<float>(y);
uchar* mask_row = mask.ptr<uchar>(y);
hal::fastAtan2(dY_max_row, dX_min_row, orient_row, size.width, true);
// make orientation zero where the gradient is very small
for( x = 0; x < size.width; x++ )
{
float dY = dY_max_row[x];
float dX = dX_min_row[x];
if( std::abs(dX) < gradient_epsilon && std::abs(dY) < gradient_epsilon )
{
mask_row[x] = (uchar)0;
orient_row[x] = 0.f;
}
else
mask_row[x] = (uchar)1;
}
}
erode( mhi, dX_min, noArray(), Point(-1,-1), (aperture_size-1)/2, BORDER_REPLICATE );
dilate( mhi, dY_max, noArray(), Point(-1,-1), (aperture_size-1)/2, BORDER_REPLICATE );
// mask off pixels which have little motion difference in their neighborhood
for( y = 0; y < size.height; y++ )
{
const float* dX_min_row = dX_min.ptr<float>(y);
const float* dY_max_row = dY_max.ptr<float>(y);
float* orient_row = orient.ptr<float>(y);
uchar* mask_row = mask.ptr<uchar>(y);
for( x = 0; x < size.width; x++ )
{
float d0 = dY_max_row[x] - dX_min_row[x];
if( mask_row[x] == 0 || d0 < min_delta || max_delta < d0 )
{
mask_row[x] = (uchar)0;
orient_row[x] = 0.f;
}
}
}
}
double calcGlobalOrientation( InputArray _orientation, InputArray _mask,
InputArray _mhi, double /*timestamp*/,
double duration )
{
Mat orient = _orientation.getMat(), mask = _mask.getMat(), mhi = _mhi.getMat();
Size size = mhi.size();
CV_Assert( mask.type() == CV_8U && orient.type() == CV_32F && mhi.type() == CV_32F );
CV_Assert( mask.size() == size && orient.size() == size );
CV_Assert( duration > 0 );
int histSize = 12;
float _ranges[] = { 0.f, 360.f };
const float* ranges = _ranges;
Mat hist;
calcHist(&orient, 1, 0, mask, hist, 1, &histSize, &ranges);
// find the maximum index (the dominant orientation)
Point baseOrientPt;
minMaxLoc(hist, 0, 0, 0, &baseOrientPt);
float fbaseOrient = (baseOrientPt.x + baseOrientPt.y)*360.f/histSize;
// override timestamp with the maximum value in MHI
double timestamp = 0;
minMaxLoc( mhi, 0, &timestamp, 0, 0, mask );
// find the shift relative to the dominant orientation as weighted sum of relative angles
float a = (float)(254. / 255. / duration);
float b = (float)(1. - timestamp * a);
float delbound = (float)(timestamp - duration);
if( mhi.isContinuous() && mask.isContinuous() && orient.isContinuous() )
{
size.width *= size.height;
size.height = 1;
}
/*
a = 254/(255*dt)
b = 1 - t*a = 1 - 254*t/(255*dur) =
(255*dt - 254*t)/(255*dt) =
(dt - (t - dt)*254)/(255*dt);
--------------------------------------------------------
ax + b = 254*x/(255*dt) + (dt - (t - dt)*254)/(255*dt) =
(254*x + dt - (t - dt)*254)/(255*dt) =
((x - (t - dt))*254 + dt)/(255*dt) =
(((x - (t - dt))/dt)*254 + 1)/255 = (((x - low_time)/dt)*254 + 1)/255
*/
float shiftOrient = 0, shiftWeight = 0;
for( int y = 0; y < size.height; y++ )
{
const float* mhiptr = mhi.ptr<float>(y);
const float* oriptr = orient.ptr<float>(y);
const uchar* maskptr = mask.ptr<uchar>(y);
for( int x = 0; x < size.width; x++ )
{
if( maskptr[x] != 0 && mhiptr[x] > delbound )
{
/*
orient in 0..360, base_orient in 0..360
-> (rel_angle = orient - base_orient) in -360..360.
rel_angle is translated to -180..180
*/
float weight = mhiptr[x] * a + b;
float relAngle = oriptr[x] - fbaseOrient;
relAngle += (relAngle < -180 ? 360 : 0);
relAngle += (relAngle > 180 ? -360 : 0);
if( fabs(relAngle) < 45 )
{
shiftOrient += weight * relAngle;
shiftWeight += weight;
}
}
}
}
// add the dominant orientation and the relative shift
if( shiftWeight == 0 )
shiftWeight = 0.01f;
fbaseOrient += shiftOrient / shiftWeight;
fbaseOrient -= (fbaseOrient < 360 ? 0 : 360);
fbaseOrient += (fbaseOrient >= 0 ? 0 : 360);
return fbaseOrient;
}
void segmentMotion(InputArray _mhi, OutputArray _segmask,
vector<Rect>& boundingRects,
double timestamp, double segThresh)
{
Mat mhi = _mhi.getMat();
_segmask.create(mhi.size(), CV_32F);
Mat segmask = _segmask.getMat();
segmask = Scalar::all(0);
CV_Assert( mhi.type() == CV_32F );
CV_Assert( segThresh >= 0 );
Mat mask = Mat::zeros( mhi.rows + 2, mhi.cols + 2, CV_8UC1 );
int x, y;
// protect zero mhi pixels from floodfill.
for( y = 0; y < mhi.rows; y++ )
{
const float* mhiptr = mhi.ptr<float>(y);
uchar* maskptr = mask.ptr<uchar>(y+1) + 1;
for( x = 0; x < mhi.cols; x++ )
{
if( mhiptr[x] == 0 )
maskptr[x] = 1;
}
}
float ts = (float)timestamp;
float comp_idx = 1.f;
for( y = 0; y < mhi.rows; y++ )
{
float* mhiptr = mhi.ptr<float>(y);
uchar* maskptr = mask.ptr<uchar>(y+1) + 1;
for( x = 0; x < mhi.cols; x++ )
{
if( mhiptr[x] == ts && maskptr[x] == 0 )
{
Rect cc;
floodFill( mhi, mask, Point(x,y), Scalar::all(0),
&cc, Scalar::all(segThresh), Scalar::all(segThresh),
FLOODFILL_MASK_ONLY + 2*256 + 4 );
for( int y1 = 0; y1 < cc.height; y1++ )
{
float* segmaskptr = segmask.ptr<float>(cc.y + y1) + cc.x;
uchar* maskptr1 = mask.ptr<uchar>(cc.y + y1 + 1) + cc.x + 1;
for( int x1 = 0; x1 < cc.width; x1++ )
{
if( maskptr1[x1] > 1 )
{
maskptr1[x1] = 1;
segmaskptr[x1] = comp_idx;
}
}
}
comp_idx += 1.f;
boundingRects.push_back(cc);
}
}
}
}
}
}
/* End of file. */