You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
142 lines
5.5 KiB
142 lines
5.5 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2014, Itseez Inc, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Itseez Inc or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include <iostream> |
|
#include <opencv2/opencv_modules.hpp> |
|
|
|
#ifdef HAVE_OPENCV_TEXT |
|
|
|
#include "opencv2/datasets/tr_chars.hpp" |
|
#include <opencv2/core.hpp> |
|
#include "opencv2/text.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/imgcodecs.hpp" |
|
|
|
#include <cstdio> |
|
#include <cstdlib> // atoi |
|
|
|
#include <string> |
|
#include <vector> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::datasets; |
|
using namespace cv::text; |
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
const char *keys = |
|
"{ help h usage ? | | show this message }" |
|
"{ path p |true| path to dataset description file ( list_English_Img.m ) and Img folder.}"; |
|
CommandLineParser parser(argc, argv, keys); |
|
string path(parser.get<string>("path")); |
|
if (parser.has("help") || path=="true") |
|
{ |
|
parser.printMessage(); |
|
return -1; |
|
} |
|
|
|
Ptr<TR_chars> dataset = TR_chars::create(); |
|
dataset->load(path); |
|
|
|
// *************** |
|
// dataset. train, test contain information about each element of appropriate sets and splits. |
|
// For example, let output first elements of these vectors and their sizes for last split. |
|
// And number of splits. |
|
int numSplits = dataset->getNumSplits(); |
|
printf("splits number: %u\n", numSplits); |
|
|
|
vector< Ptr<Object> > &currTrain = dataset->getTrain(numSplits-1); |
|
vector< Ptr<Object> > &currTest = dataset->getTest(numSplits-1); |
|
vector< Ptr<Object> > &currValidation = dataset->getValidation(numSplits-1); |
|
printf("train size: %u\n", (unsigned int)currTrain.size()); |
|
printf("test size: %u\n", (unsigned int)currTest.size()); |
|
printf("validation size: %u\n", (unsigned int)currValidation.size()); |
|
|
|
|
|
// WARNING: The order of classes' labels is different in Chars74k and in the output of our classifier |
|
string src_classes = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; // labels order as in the clasifier output |
|
string tar_classes = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; // labels order as in the Chars74k dataset |
|
|
|
Ptr<OCRHMMDecoder::ClassifierCallback> ocr = loadOCRHMMClassifierCNN("OCRBeamSearch_CNN_model_data.xml.gz"); |
|
|
|
int numOK = 0; |
|
int upperNumOK = 0; |
|
|
|
for (unsigned int i=0; i<(unsigned int)currTest.size(); i++) |
|
{ |
|
TR_charsObj *exampleTest = static_cast<TR_charsObj *>(currTest[i].get()); |
|
printf("processed image: %u, name: %s\n", i, exampleTest->imgName.c_str()); |
|
printf(" label: %u,", exampleTest->label); |
|
|
|
string imfilename = path+string("/Img/")+exampleTest->imgName.c_str()+string(".png"); |
|
Mat image = imread(imfilename); |
|
vector<int> out_classes; |
|
vector<double> out_confidences; |
|
ocr->eval(image, out_classes, out_confidences); |
|
int prediction = 1 + tar_classes.find_first_of(src_classes[out_classes[0]]); |
|
printf(" prediction: %u\n", prediction); |
|
|
|
if (exampleTest->label == prediction) |
|
numOK++; |
|
|
|
char l = tar_classes[exampleTest->label]; |
|
char p = tar_classes[prediction]; |
|
if (toupper(l) == toupper(p)) |
|
upperNumOK++; |
|
} |
|
|
|
printf("\n---------------------------------------------\n"); |
|
printf("Chars74k Classification Accuracy (case-sensitive): %f\n",(float)numOK/currTest.size()); |
|
printf("Chars74k Classification Accuracy (case-insensitive): %f\n",(float)upperNumOK/currTest.size()); |
|
|
|
return 0; |
|
} |
|
|
|
#else |
|
|
|
int main() |
|
{ |
|
std::cerr << "OpenCV was built without text module" << std::endl; |
|
return 0; |
|
} |
|
|
|
#endif // HAVE_OPENCV_TEXT
|
|
|