You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
102 lines
3.6 KiB
102 lines
3.6 KiB
#include "opencv2/datasets/pd_inria.hpp" |
|
#include <opencv2/highgui.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <iostream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::datasets; |
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
const char *keys = |
|
"{ help h usage ? | | show this message }" |
|
"{ path p |true | path to dataset }" |
|
"{ save s |false| save resized positive images }" |
|
"{ rwidth rw |64 | width of resized positive images }" |
|
"{ rheight rh |128 | height of resized positive images }" |
|
"{ padding |8 | vertical padding of resized positive images }"; |
|
|
|
CommandLineParser parser(argc, argv, keys); |
|
bool savebbox = parser.get<bool>("save"); |
|
int rwidth = parser.get<int>("rwidth"); |
|
int rheight = parser.get<int>("rheight"); |
|
int padding = parser.get<int>("padding"); |
|
string path(parser.get<string>("path")); |
|
|
|
if (parser.has("help") || path=="true") |
|
{ |
|
parser.printMessage(); |
|
return -1; |
|
} |
|
|
|
Ptr<PD_inria> dataset = PD_inria::create(); |
|
dataset->load(path); |
|
|
|
size_t train_size = dataset->getTrain().size(); |
|
size_t test_size = dataset->getTest().size(); |
|
cout << "train size: " << train_size << endl; |
|
cout << "test size: " << test_size << endl; |
|
|
|
int bbox_count = 0; |
|
|
|
for( size_t i = 0; i < train_size; i++ ) |
|
{ |
|
PD_inriaObj *example = static_cast<PD_inriaObj *>(dataset->getTrain()[i].get()); |
|
cout << "\ntrain object index: " << i << endl; |
|
cout << "file name: " << example->filename << endl; |
|
|
|
// image size |
|
cout << "image size: " << endl; |
|
cout << " - width: " << example->width << endl; |
|
cout << " - height: " << example->height << endl; |
|
cout << " - depth: " << example->depth << endl; |
|
|
|
Mat img = imread( example->filename ); |
|
|
|
// bounding boxes |
|
for ( size_t j = 0; j < example->bndboxes.size(); j++ ) |
|
{ |
|
Rect obj_bndbox = example->bndboxes[j]; // bounding box of object |
|
cout << " - bounding box: " << j << " - " << obj_bndbox << endl; |
|
|
|
int vpadding, hpadding; |
|
Rect ex_bndbox; // variable used for calculating expanded bounding box |
|
|
|
vpadding = cvRound(padding * obj_bndbox.height / rheight); // calculate vertical padding |
|
ex_bndbox.y = obj_bndbox.y - vpadding; |
|
ex_bndbox.height = 2 * vpadding + obj_bndbox.height; |
|
ex_bndbox.x = obj_bndbox.x + (obj_bndbox.width / 2); |
|
ex_bndbox.width = ex_bndbox.height * rwidth / rheight; |
|
ex_bndbox.x -= (ex_bndbox.width + 1) / 2; |
|
|
|
if (obj_bndbox.width > ex_bndbox.width) |
|
{ |
|
obj_bndbox.x += (obj_bndbox.width - ex_bndbox.width + 1) / 2; |
|
obj_bndbox.width = ex_bndbox.width; |
|
} |
|
|
|
hpadding = obj_bndbox.x - ex_bndbox.x; // calculate horizontal padding |
|
|
|
if(savebbox) |
|
{ |
|
Mat dst; |
|
copyMakeBorder(img(obj_bndbox), dst, vpadding, vpadding, hpadding, hpadding, BORDER_REFLECT); |
|
resize(dst, dst, Size(rwidth, rheight), 0, 0, INTER_AREA); |
|
imwrite(path + format("person_%04d.png", bbox_count++), dst); |
|
} |
|
else |
|
rectangle(img, obj_bndbox, Scalar(0, 0, 255), 2); |
|
} |
|
|
|
if (savebbox) |
|
continue; // skip UI updates |
|
|
|
imshow("INRIAPerson Dataset Train Images", img); |
|
cout << "\nPress a key to continue or ESC to exit." << endl; |
|
int key = waitKey(); |
|
if( key == 27 ) break; |
|
} |
|
|
|
return 0; |
|
}
|
|
|