You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
171 lines
6.1 KiB
171 lines
6.1 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2014, Itseez Inc, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Itseez Inc or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "opencv2/core.hpp" |
|
#include "opencv2/imgcodecs.hpp" |
|
#include "opencv2/datasets/fr_lfw.hpp" |
|
|
|
#include <iostream> |
|
#include <cstdio> |
|
#include <string> |
|
#include <vector> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::datasets; |
|
|
|
|
|
int main(int argc, const char *argv[]) |
|
{ |
|
const char *keys = |
|
"{ help h usage ? | | show this message }" |
|
"{ path p |true| path to dataset (lfw2 folder) }" |
|
"{ train t |dev | train method: 'dev'(pairsDevTrain.txt) or 'split'(pairs.txt) }"; |
|
|
|
CommandLineParser parser(argc, argv, keys); |
|
string path(parser.get<string>("path")); |
|
if (parser.has("help") || path=="true") |
|
{ |
|
parser.printMessage(); |
|
return -1; |
|
} |
|
string trainMethod(parser.get<string>("train")); |
|
|
|
// our trained threshold for "same": |
|
double threshold = 0; |
|
|
|
// load dataset |
|
Ptr<FR_lfw> dataset = FR_lfw::create(); |
|
dataset->load(path); |
|
|
|
unsigned int numSplits = dataset->getNumSplits(); |
|
printf("splits number: %u\n", numSplits); |
|
if (trainMethod == "dev") |
|
printf("train size: %u\n", (unsigned int)dataset->getTrain().size()); |
|
else |
|
printf("train size: %u\n", (numSplits-1) * (unsigned int)dataset->getTest().size()); |
|
printf("test size: %u\n", (unsigned int)dataset->getTest().size()); |
|
|
|
|
|
if (trainMethod == "dev") // train on personsDevTrain.txt |
|
{ |
|
// collect average same-distances: |
|
double avg = 0; |
|
int count = 0; |
|
for (unsigned int i=0; i<dataset->getTrain().size(); ++i) |
|
{ |
|
FR_lfwObj *example = static_cast<FR_lfwObj *>(dataset->getTrain()[i].get()); |
|
|
|
Mat a = imread(path+example->image1, IMREAD_GRAYSCALE); |
|
Mat b = imread(path+example->image2, IMREAD_GRAYSCALE); |
|
double dist = norm(a,b); |
|
if (example->same) |
|
{ |
|
avg += dist; |
|
count ++; |
|
} |
|
} |
|
threshold = avg / count; |
|
} |
|
|
|
vector<double> p; |
|
for (unsigned int j=0; j<numSplits; ++j) |
|
{ |
|
if (trainMethod == "split") // train on the remaining 9 splits from pairs.txt |
|
{ |
|
double avg = 0; |
|
int count = 0; |
|
for (unsigned int j2=0; j2<numSplits; ++j2) |
|
{ |
|
if (j==j2) continue; // skip test split for training |
|
|
|
vector < Ptr<Object> > &curr = dataset->getTest(j2); |
|
for (unsigned int i=0; i<curr.size(); ++i) |
|
{ |
|
FR_lfwObj *example = static_cast<FR_lfwObj *>(curr[i].get()); |
|
Mat a = imread(path+example->image1, IMREAD_GRAYSCALE); |
|
Mat b = imread(path+example->image2, IMREAD_GRAYSCALE); |
|
double dist = norm(a,b); |
|
if (example->same) |
|
{ |
|
avg += dist; |
|
count ++; |
|
} |
|
} |
|
} |
|
threshold = avg / count; |
|
} |
|
|
|
unsigned int incorrect = 0, correct = 0; |
|
vector < Ptr<Object> > &curr = dataset->getTest(j); |
|
for (unsigned int i=0; i<curr.size(); ++i) |
|
{ |
|
FR_lfwObj *example = static_cast<FR_lfwObj *>(curr[i].get()); |
|
|
|
Mat a = imread(path+example->image1, IMREAD_GRAYSCALE); |
|
Mat b = imread(path+example->image2, IMREAD_GRAYSCALE); |
|
bool same = (norm(a,b) <= threshold); |
|
if (same == example->same) |
|
correct++; |
|
else |
|
incorrect++; |
|
} |
|
p.push_back(1.0*correct/(correct+incorrect)); |
|
printf("correct: %u, from: %u -> %f\n", correct, correct+incorrect, p.back()); |
|
} |
|
|
|
double mu = 0.0; |
|
for (vector<double>::iterator it=p.begin(); it!=p.end(); ++it) |
|
{ |
|
mu += *it; |
|
} |
|
mu /= p.size(); |
|
double sigma = 0.0; |
|
for (vector<double>::iterator it=p.begin(); it!=p.end(); ++it) |
|
{ |
|
sigma += (*it - mu)*(*it - mu); |
|
} |
|
sigma = sqrt(sigma/p.size()); |
|
double se = sigma/sqrt(double(p.size())); |
|
printf("estimated mean accuracy: %f and the standard error of the mean: %f\n", mu, se); |
|
|
|
return 0; |
|
}
|
|
|