You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
245 lines
8.3 KiB
245 lines
8.3 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2014, Itseez Inc, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Itseez Inc or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "opencv2/datasets/ar_hmdb.hpp" |
|
#include "opencv2/datasets/util.hpp" |
|
|
|
#include <opencv2/core.hpp> |
|
#include <opencv2/flann.hpp> |
|
#include <opencv2/ml.hpp> |
|
|
|
#include <cstdio> |
|
|
|
#include <string> |
|
#include <vector> |
|
#include <fstream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::datasets; |
|
using namespace cv::flann; |
|
using namespace cv::ml; |
|
|
|
void fillData(const string &path, vector< Ptr<Object> > &curr, Index &flann_index, Mat1f &data, Mat1i &labels); |
|
void fillData(const string &path, vector< Ptr<Object> > &curr, Index &flann_index, Mat1f &data, Mat1i &labels) |
|
{ |
|
const unsigned int descriptorNum = 162; |
|
Mat1f sample(1, descriptorNum); |
|
Mat1i nresps(1, 1); |
|
Mat1f dists(1, 1); |
|
|
|
unsigned int numFiles = 0; |
|
for (unsigned int i=0; i<curr.size(); ++i) |
|
{ |
|
AR_hmdbObj *example = static_cast<AR_hmdbObj *>(curr[i].get()); |
|
string featuresFullPath = path + "hmdb51_org_stips/" + example->name + "/" + example->videoName + ".txt"; |
|
|
|
ifstream infile(featuresFullPath.c_str()); |
|
string line; |
|
// skip header |
|
for (unsigned int j=0; j<3; ++j) |
|
{ |
|
getline(infile, line); |
|
} |
|
while (getline(infile, line)) |
|
{ |
|
// 7 skip, hog+hof: 72+90 read |
|
vector<string> elems; |
|
split(line, elems, '\t'); |
|
|
|
for (unsigned int j=0; j<descriptorNum; ++j) |
|
{ |
|
sample(0, j) = (float)atof(elems[j+7].c_str()); |
|
} |
|
|
|
flann_index.knnSearch(sample, nresps, dists, 1, SearchParams()); |
|
data(numFiles, nresps(0, 0)) ++; |
|
} |
|
labels(numFiles, 0) = example->id; |
|
numFiles++; |
|
} |
|
} |
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
const char *keys = |
|
"{ help h usage ? | | show this message }" |
|
"{ path p |true| path to dataset }"; |
|
CommandLineParser parser(argc, argv, keys); |
|
string path(parser.get<string>("path")); |
|
if (parser.has("help") || path=="true") |
|
{ |
|
parser.printMessage(); |
|
return -1; |
|
} |
|
|
|
// loading dataset |
|
Ptr<AR_hmdb> dataset = AR_hmdb::create(); |
|
dataset->load(path); |
|
|
|
int numSplits = dataset->getNumSplits(); |
|
printf("splits number: %u\n", numSplits); |
|
|
|
|
|
const unsigned int descriptorNum = 162; |
|
const unsigned int clusterNum = 4000; |
|
const unsigned int sampleNum = 5613856; // max for all 3 splits |
|
|
|
vector<double> res; |
|
for (int currSplit=0; currSplit<numSplits; ++currSplit) |
|
{ |
|
Mat1f samples(sampleNum, descriptorNum); |
|
unsigned int currSample = 0; |
|
vector< Ptr<Object> > &curr = dataset->getTrain(currSplit); |
|
unsigned int numFeatures = 0; |
|
for (unsigned int i=0; i<curr.size(); ++i) |
|
{ |
|
AR_hmdbObj *example = static_cast<AR_hmdbObj *>(curr[i].get()); |
|
string featuresFullPath = path + "hmdb51_org_stips/" + example->name + "/" + example->videoName + ".txt"; |
|
ifstream infile(featuresFullPath.c_str()); |
|
string line; |
|
// skip header |
|
for (unsigned int j=0; j<3; ++j) |
|
{ |
|
getline(infile, line); |
|
} |
|
while (getline(infile, line)) |
|
{ |
|
numFeatures++; |
|
if (currSample < sampleNum) |
|
{ |
|
// 7 skip, hog+hof: 72+90 read |
|
vector<string> elems; |
|
split(line, elems, '\t'); |
|
|
|
for (unsigned int j=0; j<descriptorNum; ++j) |
|
{ |
|
samples(currSample, j) = (float)atof(elems[j+7].c_str()); |
|
} |
|
currSample++; |
|
} |
|
} |
|
} |
|
printf("split %u, train features number: %u, samples number: %u\n", currSplit, numFeatures, currSample); |
|
|
|
// clustering |
|
Mat1f centers(clusterNum, descriptorNum); |
|
::cvflann::KMeansIndexParams kmean_params; |
|
unsigned int resultClusters = hierarchicalClustering< L2<float> >(samples, centers, kmean_params); |
|
if (resultClusters < clusterNum) |
|
{ |
|
centers = centers.rowRange(Range(0, resultClusters)); |
|
} |
|
Index flann_index(centers, KDTreeIndexParams()); |
|
printf("resulted clusters number: %u\n", resultClusters); |
|
|
|
|
|
unsigned int numTrainFiles = curr.size(); |
|
Mat1f trainData(numTrainFiles, resultClusters); |
|
Mat1i trainLabels(numTrainFiles, 1); |
|
|
|
for (unsigned int i=0; i<numTrainFiles; ++i) |
|
{ |
|
for (unsigned int j=0; j<resultClusters; ++j) |
|
{ |
|
trainData(i, j) = 0; |
|
} |
|
} |
|
|
|
printf("calculating train histograms\n"); |
|
fillData(path, curr, flann_index, trainData, trainLabels); |
|
|
|
printf("train svm\n"); |
|
Ptr<SVM> svm = SVM::create(); |
|
svm->setType(SVM::C_SVC); |
|
svm->setKernel(SVM::POLY); //SVM::RBF; |
|
svm->setDegree(0.5); |
|
svm->setGamma(1); |
|
svm->setCoef0(1); |
|
svm->setC(1); |
|
svm->setNu(0.5); |
|
svm->setP(0); |
|
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 1000, 0.01)); |
|
svm->train(trainData, ROW_SAMPLE, trainLabels); |
|
|
|
// prepare to predict |
|
curr = dataset->getTest(currSplit); |
|
unsigned int numTestFiles = curr.size(); |
|
Mat1f testData(numTestFiles, resultClusters); |
|
Mat1i testLabels(numTestFiles, 1); // ground true |
|
|
|
for (unsigned int i=0; i<numTestFiles; ++i) |
|
{ |
|
for (unsigned int j=0; j<resultClusters; ++j) |
|
{ |
|
testData(i, j) = 0; |
|
} |
|
} |
|
|
|
printf("calculating test histograms\n"); |
|
fillData(path, curr, flann_index, testData, testLabels); |
|
|
|
printf("predicting\n"); |
|
Mat1f testPredicted(numTestFiles, 1); |
|
svm->predict(testData, testPredicted); |
|
|
|
unsigned int correct = 0; |
|
for (unsigned int i=0; i<numTestFiles; ++i) |
|
{ |
|
if ((int)testPredicted(i, 0) == testLabels(i, 0)) |
|
{ |
|
correct++; |
|
} |
|
} |
|
double accuracy = 1.0*correct/numTestFiles; |
|
printf("correctly recognized actions: %f\n", accuracy); |
|
res.push_back(accuracy); |
|
} |
|
|
|
double accuracy = 0.0; |
|
for (unsigned int i=0; i<res.size(); ++i) |
|
{ |
|
accuracy += res[i]; |
|
} |
|
printf("average: %f\n", accuracy/res.size()); |
|
|
|
return 0; |
|
}
|
|
|