#!/usr/bin/env python ''' A program demonstrating the use and capabilities of a particular image segmentation algorithm described in Jasper R. R. Uijlings, Koen E. A. van de Sande, Theo Gevers, Arnold W. M. Smeulders: "Selective Search for Object Recognition" International Journal of Computer Vision, Volume 104 (2), page 154-171, 2013 Usage: ./selectivesearchsegmentation_demo.py input_image (single|fast|quality) Use "a" to display less rects, 'd' to display more rects, "q" to quit. ''' import cv2 import sys if __name__ == '__main__': img = cv2.imread(sys.argv[1]) cv2.setUseOptimized(True) cv2.setNumThreads(8) gs = cv2.ximgproc.segmentation.createSelectiveSearchSegmentation() gs.setBaseImage(img) if (sys.argv[2][0] == 's'): gs.switchToSingleStrategy() elif (sys.argv[2][0] == 'f'): gs.switchToSelectiveSearchFast() elif (sys.argv[2][0] == 'q'): gs.switchToSelectiveSearchQuality() else: print(__doc__) sys.exit(1) rects = gs.process() nb_rects = 10 while True: wimg = img.copy() for i in range(len(rects)): if (i < nb_rects): x, y, w, h = rects[i] cv2.rectangle(wimg, (x, y), (x+w, y+h), (0, 255, 0), 1, cv2.LINE_AA) cv2.imshow("Output", wimg); c = cv2.waitKey() if (c == 100): nb_rects += 10 elif (c == 97 and nb_rects > 10): nb_rects -= 10 elif (c == 113): break cv2.destroyAllWindows()