#include "test_precomp.hpp" namespace cvtest { TEST(xphoto_dctimagedenoising, regression) { cv::String dir = cvtest::TS::ptr()->get_data_path() + "dct_image_denoising/"; int nTests = 1; float psnrThreshold[] = {0.5}; int psize[] = {8}; double sigma[] = {9.0}; for (int i = 0; i < nTests; ++i) { cv::String srcName = dir + cv::format( "sources/%02d.png", i + 1); cv::Mat src = cv::imread( srcName, 1 ); cv::String previousResultName = dir + cv::format( "results/%02d.png", i + 1 ); cv::Mat previousResult = cv::imread( previousResultName, 1 ); cv::Mat sqrError = ( src - previousResult ).mul( src - previousResult ); cv::Scalar mse = cv::sum(sqrError) / cv::Scalar::all( sqrError.total()*sqrError.channels() ); double psnr = 10*log10(3*255*255/(mse[0] + mse[1] + mse[2])); cv::Mat currentResult, fastNlMeansResult; cv::dctDenoising(src, currentResult, sigma[i], psize[i]); cv::Mat sqrError = ( currentResult - previousResult ) .mul( currentResult - previousResult ); cv::Scalar mse = cv::sum(sqrError) / cv::Scalar::all( sqrError.total()*sqrError.channels() ); double psnr = 10*log10(3*255*255/(mse[0] + mse[1] + mse[2])) - psnr; EXPECT_GE( psnr, psnrThreshold[i] ); } } }