/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "featureColorName.cpp" #include /*--------------------------- | TrackerKCFModel |---------------------------*/ namespace cv{ /** * \brief Implementation of TrackerModel for MIL algorithm */ class TrackerKCFModel : public TrackerModel{ public: TrackerKCFModel(TrackerKCF::Params /*params*/){} ~TrackerKCFModel(){} protected: void modelEstimationImpl( const std::vector& /*responses*/ ){} void modelUpdateImpl(){} }; } /* namespace cv */ /*--------------------------- | TrackerKCF |---------------------------*/ namespace cv{ /* * Prototype */ class TrackerKCFImpl : public TrackerKCF { public: TrackerKCFImpl( const TrackerKCF::Params ¶meters = TrackerKCF::Params() ); void read( const FileNode& /*fn*/ ); void write( FileStorage& /*fs*/ ) const; protected: /* * basic functions and vars */ bool initImpl( const Mat& /*image*/, const Rect2d& boundingBox ); bool updateImpl( const Mat& image, Rect2d& boundingBox ); TrackerKCF::Params params; /* * KCF functions and vars */ void createHanningWindow(OutputArray _dst, const cv::Size winSize, const int type) const; void inline fft2(const Mat src, std::vector & dest) const; void inline fft2(const Mat src, Mat & dest) const; void inline ifft2(const Mat src, Mat & dest) const ; void inline pixelWiseMult(const std::vector src1, const std::vector src2, std::vector & dest, const int flags, const bool conjB=false) const; void inline sumChannels(std::vector src, Mat & dest) const; void inline updateProjectionMatrix(const Mat src, Mat & old_cov,Mat & _proj_mtx,double pca_rate, int compressed_sz) const; void inline compress(const Mat _proj_mtx, const Mat src, Mat & dest) const; bool getSubWindow(const Mat img, const Rect roi, Mat& patch) const; void extractCN(Mat _patch, Mat & cnFeatures) const; void denseGaussKernel(const double sigma, const Mat _x, const Mat _y, Mat & _k) const; void calcResponse(const Mat _alphaf, const Mat _k, Mat & _response) const; void calcResponse(const Mat _alphaf, const Mat _alphaf_den, const Mat _k, Mat & _response) const; void shiftRows(Mat& mat) const; void shiftRows(Mat& mat, int n) const; void shiftCols(Mat& mat, int n) const; private: double output_sigma; Rect2d roi; Mat hann; //hann window filter Mat y,yf; // training response and its FFT Mat x,xf; // observation and its FFT Mat k,kf; // dense gaussian kernel and its FFT Mat kf_lambda; // kf+lambda Mat new_alphaf, alphaf; // training coefficients Mat new_alphaf_den, alphaf_den; // for splitted training coefficients Mat z, new_z; // model Mat response; // detection result Mat old_cov_mtx, proj_mtx; // for feature compression bool resizeImage; // resize the image whenever needed and the patch size is large int frame; }; /* * Constructor */ Ptr TrackerKCF::createTracker(const TrackerKCF::Params ¶meters){ return Ptr(new TrackerKCFImpl(parameters)); } TrackerKCFImpl::TrackerKCFImpl( const TrackerKCF::Params ¶meters ) : params( parameters ) { isInit = false; resizeImage = false; CV_Assert(params.descriptor == GRAY || params.descriptor == CN /*|| params.descriptor == CN2*/); } void TrackerKCFImpl::read( const cv::FileNode& fn ){ params.read( fn ); } void TrackerKCFImpl::write( cv::FileStorage& fs ) const{ params.write( fs ); } /* * Initialization: * - creating hann window filter * - ROI padding * - creating a gaussian response for the training ground-truth * - perform FFT to the gaussian response */ bool TrackerKCFImpl::initImpl( const Mat& /*image*/, const Rect2d& boundingBox ){ frame=0; roi = boundingBox; //calclulate output sigma output_sigma=sqrt(roi.width*roi.height)*params.output_sigma_factor; output_sigma=-0.5/(output_sigma*output_sigma); //resize the ROI whenever needed if(params.resize && roi.width*roi.height>params.max_patch_size){ resizeImage=true; roi.x/=2.0; roi.y/=2.0; roi.width/=2.0; roi.height/=2.0; } // add padding to the roi roi.x-=roi.width/2; roi.y-=roi.height/2; roi.width*=2; roi.height*=2; // initialize the hann window filter createHanningWindow(hann, roi.size(), CV_64F); if(params.descriptor==CN){ Mat layers[] = {hann, hann, hann, hann, hann, hann, hann, hann, hann, hann}; merge(layers, 10, hann); } // create gaussian response y=Mat::zeros((int)roi.height,(int)roi.width,CV_64F); for(unsigned i=0;i(i,j)=(i-roi.height/2+1)*(i-roi.height/2+1)+(j-roi.width/2+1)*(j-roi.width/2+1); } } y*=(double)output_sigma; cv::exp(y,y); // perform fourier transfor to the gaussian response fft2(y,yf); model=Ptr(new TrackerKCFModel(params)); // TODO: return true only if roi inside the image return true; } /* * Main part of the KCF algorithm */ bool TrackerKCFImpl::updateImpl( const Mat& image, Rect2d& boundingBox ){ double minVal, maxVal; // min-max response Point minLoc,maxLoc; // min-max location Mat zc; Mat img=image.clone(); // check the channels of the input image, grayscale is preferred CV_Assert(image.channels() == 1 || image.channels() == 3); // resize the image whenever needed if(resizeImage)resize(img,img,Size(img.cols/2,img.rows/2)); // extract and pre-process the patch if(!getSubWindow(img,roi, x))return false; // detection part if(frame>0){ //compute the gaussian kernel if(params.compressFeature){ compress(proj_mtx,x,x); compress(proj_mtx,z,zc); denseGaussKernel(params.sigma,x,zc,k); }else{ denseGaussKernel(params.sigma,x,z,k); } // calculate filter response if(params.splitCoeff){ calcResponse(alphaf,alphaf_den,k,response); }else{ calcResponse(alphaf,k,response); } // extract the maximum response minMaxLoc( response, &minVal, &maxVal, &minLoc, &maxLoc ); roi.x+=(maxLoc.x-roi.width/2+1); roi.y+=(maxLoc.y-roi.height/2+1); // update the bounding box boundingBox.x=(resizeImage?roi.x*2:roi.x)+boundingBox.width/2; boundingBox.y=(resizeImage?roi.y*2:roi.y)+boundingBox.height/2; } // extract the patch for learning purpose if(!getSubWindow(img,roi, x))return false; //update the training data new_z=x.clone(); if(frame==0){ z=x.clone(); }else{ z=(1.0-params.interp_factor)*z+params.interp_factor*new_z; } if(params.compressFeature){ // feature compression updateProjectionMatrix(z,old_cov_mtx,proj_mtx,params.pca_learning_rate,params.compressed_size); compress(proj_mtx,x,x); } // Kernel Regularized Least-Squares, calculate alphas denseGaussKernel(params.sigma,x,x,k); fft2(k,kf); kf_lambda=kf+params.lambda; /* TODO: optimize this element-wise division * new_alphaf=yf./kf * z=(a+bi)/(c+di)[(ac+bd)+i(bc-ad)]/(c^2+d^2) */ new_alphaf=Mat_(yf.rows, yf.cols); std::complex temp; if(params.splitCoeff){ mulSpectrums(yf,kf,new_alphaf,0); mulSpectrums(kf,kf_lambda,new_alphaf_den,0); }else{ for(int i=0;i(yf.at(i,j)[0],yf.at(i,j)[1])/(std::complex(kf_lambda.at(i,j)[0],kf_lambda.at(i,j)[1])/*+std::complex(0.0000000001,0.0000000001)*/); new_alphaf.at(i,j)[0]=temp.real(); new_alphaf.at(i,j)[1]=temp.imag(); } } } // update the RLS model if(frame==0){ alphaf=new_alphaf.clone(); if(params.splitCoeff)alphaf_den=new_alphaf_den.clone(); }else{ alphaf=(1.0-params.interp_factor)*alphaf+params.interp_factor*new_alphaf; if(params.splitCoeff)alphaf_den=(1.0-params.interp_factor)*alphaf_den+params.interp_factor*new_alphaf_den; } frame++; return true; } /*------------------------------------- | implementation of the KCF functions |-------------------------------------*/ /* * hann window filter */ void TrackerKCFImpl::createHanningWindow(OutputArray _dst, const cv::Size winSize, const int type)const{ CV_Assert( type == CV_32FC1 || type == CV_64FC1 ); _dst.create(winSize, type); Mat dst = _dst.getMat(); int rows = dst.rows, cols = dst.cols; AutoBuffer _wc(cols); double * const wc = (double *)_wc; double coeff0 = 2.0 * CV_PI / (double)(cols - 1), coeff1 = 2.0f * CV_PI / (double)(rows - 1); for(int j = 0; j < cols; j++) wc[j] = 0.5 * (1.0 - cos(coeff0 * j)); if(dst.depth() == CV_32F) { for(int i = 0; i < rows; i++) { float* dstData = dst.ptr(i); double wr = 0.5 * (1.0 - cos(coeff1 * i)); for(int j = 0; j < cols; j++) dstData[j] = (float)(wr * wc[j]); } } else { for(int i = 0; i < rows; i++) { double* dstData = dst.ptr(i); double wr = 0.5 * (1.0 - cos(coeff1 * i)); for(int j = 0; j < cols; j++) dstData[j] = wr * wc[j]; } } // perform batch sqrt for SSE performance gains //cv::sqrt(dst, dst); //matlab do not use the square rooted version } /* * simplification of fourier transform function in opencv */ void inline TrackerKCFImpl::fft2(const Mat src, Mat & dest)const { std::vector layers(src.channels()); std::vector outputs(src.channels()); split(src, layers); for(int i=0;i & dest) const{ std::vector layers(src.channels()); dest.clear(); dest.resize(src.channels()); split(src, layers); for(int i=0;i src1, const std::vector src2, std::vector & dest, const int flags, const bool conjB) const{ dest.clear(); dest.resize(src1.size()); for(unsigned i=0;i src, Mat & dest) const{ dest=src[0].clone(); for(unsigned i=1;i layers(src.channels()); std::vector average(src.channels()); split(src,layers); for (int i=0;i(i,i)=w.at(i); } // update the covariance matrix old_cov=(1.0-pca_rate)*old_cov+pca_rate*_proj_mtx*proj_vars*_proj_mtx.t(); } /* * compress the features */ void inline TrackerKCFImpl::compress(const Mat _proj_mtx, const Mat src, Mat & dest)const{ Mat data=src.reshape(1,src.rows*src.cols); Mat compressed=data*_proj_mtx; dest=compressed.reshape(_proj_mtx.cols,src.rows).clone(); } /* * obtain the patch and apply hann window filter to it */ bool TrackerKCFImpl::getSubWindow(const Mat img, const Rect _roi, Mat& patch) const{ Rect region=_roi; // return false if roi is outside the image if((_roi.x+_roi.width<0) ||(_roi.y+_roi.height<0) ||(_roi.x>=img.cols) ||(_roi.y>=img.rows) )return false; // extract patch inside the image if(_roi.x<0){region.x=0;region.width+=_roi.x;} if(_roi.y<0){region.y=0;region.height+=_roi.y;} if(_roi.x+_roi.width>img.cols)region.width=img.cols-_roi.x; if(_roi.y+_roi.height>img.rows)region.height=img.rows-_roi.y; if(region.width>img.cols)region.width=img.cols; if(region.height>img.rows)region.height=img.rows; patch=img(region).clone(); // add some padding to compensate when the patch is outside image border int addTop,addBottom, addLeft, addRight; addTop=region.y-_roi.y; addBottom=(_roi.height+_roi.y>img.rows?_roi.height+_roi.y-img.rows:0); addLeft=region.x-_roi.x; addRight=(_roi.width+_roi.x>img.cols?_roi.width+_roi.x-img.cols:0); copyMakeBorder(patch,patch,addTop,addBottom,addLeft,addRight,BORDER_REPLICATE); if(patch.rows==0 || patch.cols==0)return false; // extract the desired descriptors switch(params.descriptor){ case GRAY: if(img.channels()>1)cvtColor(patch,patch, CV_BGR2GRAY); patch.convertTo(patch,CV_64F); patch=patch/255.0-0.5; // normalize to range -0.5 .. 0.5 break; case CN: CV_Assert(img.channels() == 3); extractCN(patch,patch); break; case CN2: if(patch.channels()>1)cvtColor(patch,patch, CV_BGR2GRAY); break; } patch=patch.mul(hann); // hann window filter return true; } /* Convert BGR to ColorNames */ void TrackerKCFImpl::extractCN(Mat _patch, Mat & cnFeatures) const { Vec3b & pixel = _patch.at(0,0); unsigned index; Mat temp = Mat::zeros(_patch.rows,_patch.cols,CV_64FC(10)); for(int i=0;i<_patch.rows;i++){ for(int j=0;j<_patch.cols;j++){ pixel=_patch.at(i,j); index=(unsigned)(floor(pixel[2]/8)+32*floor(pixel[1]/8)+32*32*floor(pixel[0]/8)); //copy the values for(int _k=0;_k<10;_k++){ temp.at >(i,j)[_k]=ColorNames[index][_k]; } } } cnFeatures=temp.clone(); } /* * dense gauss kernel function */ void TrackerKCFImpl::denseGaussKernel(const double sigma, const Mat _x, const Mat _y, Mat & _k)const{ std::vector _xf,_yf,xyf_v; Mat xy,xyf; double normX, normY; fft2(_x,_xf); fft2(_y,_yf); normX=norm(_x); normX*=normX; normY=norm(_y); normY*=normY; pixelWiseMult(_xf,_yf,xyf_v,0,true); sumChannels(xyf_v,xyf); ifft2(xyf,xyf); if(params.wrapKernel){ shiftRows(xyf, _x.rows/2); shiftCols(xyf, _x.cols/2); } //(xx + yy - 2 * xy) / numel(x) xy=(normX+normY-2*xyf)/(_x.rows*_x.cols*_x.channels()); // TODO: check wether we really need thresholding or not //threshold(xy,xy,0.0,0.0,THRESH_TOZERO);//max(0, (xx + yy - 2 * xy) / numel(x)) for(int i=0;i(i,j)<0.0)xy.at(i,j)=0.0; } } double sig=-1.0/(sigma*sigma); xy=sig*xy; exp(xy,_k); } /* CIRCULAR SHIFT Function * http://stackoverflow.com/questions/10420454/shift-like-matlab-function-rows-or-columns-of-a-matrix-in-opencv */ // circular shift one row from up to down void TrackerKCFImpl::shiftRows(Mat& mat) const { Mat temp; Mat m; int _k = (mat.rows-1); mat.row(_k).copyTo(temp); for(; _k > 0 ; _k-- ) { m = mat.row(_k); mat.row(_k-1).copyTo(m); } m = mat.row(0); temp.copyTo(m); } // circular shift n rows from up to down if n > 0, -n rows from down to up if n < 0 void TrackerKCFImpl::shiftRows(Mat& mat, int n) const { if( n < 0 ) { n = -n; flip(mat,mat,0); for(int _k=0; _k < n;_k++) { shiftRows(mat); } flip(mat,mat,0); } else { for(int _k=0; _k < n;_k++) { shiftRows(mat); } } } //circular shift n columns from left to right if n > 0, -n columns from right to left if n < 0 void TrackerKCFImpl::shiftCols(Mat& mat, int n) const { if(n < 0){ n = -n; flip(mat,mat,1); transpose(mat,mat); shiftRows(mat,n); transpose(mat,mat); flip(mat,mat,1); } else { transpose(mat,mat); shiftRows(mat,n); transpose(mat,mat); } } /* * calculate the detection response */ void TrackerKCFImpl::calcResponse(const Mat _alphaf, const Mat _k, Mat & _response)const { //alpha f--> 2channels ; k --> 1 channel; Mat _kf; fft2(_k,_kf); Mat spec; mulSpectrums(_alphaf,_kf,spec,0,false); ifft2(spec,_response); } /* * calculate the detection response for splitted form */ void TrackerKCFImpl::calcResponse(const Mat _alphaf, const Mat _alphaf_den, const Mat _k, Mat & _response)const { Mat _kf; fft2(_k,_kf); Mat spec; Mat spec2=Mat_(_k.rows, _k.cols); std::complex temp; mulSpectrums(_alphaf,_kf,spec,0,false); for(int i=0;i<_k.rows;i++){ for(int j=0;j<_k.cols;j++){ temp=std::complex(spec.at(i,j)[0],spec.at(i,j)[1])/(std::complex(_alphaf_den.at(i,j)[0],_alphaf_den.at(i,j)[1])/*+std::complex(0.0000000001,0.0000000001)*/); spec2.at(i,j)[0]=temp.real(); spec2.at(i,j)[1]=temp.imag(); } } ifft2(spec2,_response); } /*----------------------------------------------------------------------*/ /* * Parameters */ TrackerKCF::Params::Params(){ sigma=0.2; lambda=0.01; interp_factor=0.075; output_sigma_factor=1.0/16.0; resize=true; max_patch_size=80*80; descriptor=CN; splitCoeff=true; wrapKernel=false; //feature compression compressFeature=true; compressed_size=2; pca_learning_rate=0.15; } void TrackerKCF::Params::read( const cv::FileNode& /*fn*/ ){} void TrackerKCF::Params::write( cv::FileStorage& /*fs*/ ) const{} } /* namespace cv */