// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Tencent is pleased to support the open source community by making WeChat QRCode available. // Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. #include "test_precomp.hpp" #include "opencv2/objdetect.hpp" namespace opencv_test { namespace { std::string qrcode_images_name[] = { "version_1_down.jpg", /*"version_1_left.jpg", "version_1_right.jpg", "version_1_up.jpg",*/ "version_1_top.jpg", /*"version_2_down.jpg",*/ "version_2_left.jpg", /*"version_2_right.jpg",*/ "version_2_up.jpg", "version_2_top.jpg", "version_3_down.jpg", "version_3_left.jpg", /*"version_3_right.jpg",*/ "version_3_up.jpg", "version_3_top.jpg", "version_4_down.jpg", "version_4_left.jpg", /*"version_4_right.jpg",*/ "version_4_up.jpg", "version_4_top.jpg", "version_5_down.jpg", "version_5_left.jpg", /*"version_5_right.jpg",*/ "version_5_up.jpg", "version_5_top.jpg", "russian.jpg", "kanji.jpg", /*"link_github_ocv.jpg",*/ "link_ocv.jpg", "link_wiki_cv.jpg"}; std::string qrcode_images_close[] = {/*"close_1.png",*/ "close_2.png", "close_3.png", "close_4.png", "close_5.png"}; std::string qrcode_images_monitor[] = {"monitor_1.png", "monitor_2.png", "monitor_3.png", "monitor_4.png", "monitor_5.png"}; std::string qrcode_images_curved[] = {"curved_1.jpg", /*"curved_2.jpg", "curved_3.jpg", "curved_4.jpg",*/ "curved_5.jpg", "curved_6.jpg", /*"curved_7.jpg", "curved_8.jpg"*/}; std::string qrcode_images_multiple[] = {/*"2_qrcodes.png",*/ "3_close_qrcodes.png", /*"3_qrcodes.png", "4_qrcodes.png", "5_qrcodes.png", "6_qrcodes.png",*/ "7_qrcodes.png"/*, "8_close_qrcodes.png"*/}; typedef testing::TestWithParam Objdetect_QRCode; TEST_P(Objdetect_QRCode, regression) { const std::string name_current_image = GetParam(); const std::string root = "qrcode/"; std::string image_path = findDataFile(root + name_current_image); Mat src = imread(image_path, IMREAD_GRAYSCALE); ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; vector points; // can not find the model file // so we temporarily comment it out // auto detector = wechat_qrcode::WeChatQRCode( // findDataFile("detect.prototxt", false), findDataFile("detect.caffemodel", false), // findDataFile("sr.prototxt", false), findDataFile("sr.caffemodel", false)); auto detector = wechat_qrcode::WeChatQRCode(); auto decoded_info = detector.detectAndDecode(src, points); const std::string dataset_config = findDataFile(root + "dataset_config.json"); FileStorage file_config(dataset_config, FileStorage::READ); ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config; { FileNode images_list = file_config["test_images"]; size_t images_count = static_cast(images_list.size()); ASSERT_GT(images_count, 0u) << "Can't find validation data entries in 'test_images': " << dataset_config; for (size_t index = 0; index < images_count; index++) { FileNode config = images_list[(int)index]; std::string name_test_image = config["image_name"]; if (name_test_image == name_current_image) { std::string original_info = config["info"]; string decoded_str; if (decoded_info.size()) { decoded_str = decoded_info[0]; } EXPECT_EQ(decoded_str, original_info); return; // done } } std::cerr << "Not found results for '" << name_current_image << "' image in config file:" << dataset_config << std::endl << "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data." << std::endl; } } typedef testing::TestWithParam Objdetect_QRCode_Close; TEST_P(Objdetect_QRCode_Close, regression) { const std::string name_current_image = GetParam(); const std::string root = "qrcode/close/"; std::string image_path = findDataFile(root + name_current_image); Mat src = imread(image_path, IMREAD_GRAYSCALE); ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; vector points; // can not find the model file // so we temporarily comment it out // auto detector = wechat_qrcode::WeChatQRCode( // findDataFile("detect.prototxt", false), findDataFile("detect.caffemodel", false), // findDataFile("sr.prototxt", false), findDataFile("sr.caffemodel", false)); auto detector = wechat_qrcode::WeChatQRCode(); auto decoded_info = detector.detectAndDecode(src, points); const std::string dataset_config = findDataFile(root + "dataset_config.json"); FileStorage file_config(dataset_config, FileStorage::READ); ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config; { FileNode images_list = file_config["close_images"]; size_t images_count = static_cast(images_list.size()); ASSERT_GT(images_count, 0u) << "Can't find validation data entries in 'close_images': " << dataset_config; for (size_t index = 0; index < images_count; index++) { FileNode config = images_list[(int)index]; std::string name_test_image = config["image_name"]; if (name_test_image == name_current_image) { std::string original_info = config["info"]; string decoded_str; if (decoded_info.size()) { decoded_str = decoded_info[0]; } EXPECT_EQ(decoded_str, original_info); return; // done } } std::cerr << "Not found results for '" << name_current_image << "' image in config file:" << dataset_config << std::endl << "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data." << std::endl; } } typedef testing::TestWithParam Objdetect_QRCode_Monitor; TEST_P(Objdetect_QRCode_Monitor, regression) { const std::string name_current_image = GetParam(); const std::string root = "qrcode/monitor/"; std::string image_path = findDataFile(root + name_current_image); Mat src = imread(image_path, IMREAD_GRAYSCALE); ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; vector points; // can not find the model file // so we temporarily comment it out // auto detector = wechat_qrcode::WeChatQRCode( // findDataFile("detect.prototxt", false), findDataFile("detect.caffemodel", false), // findDataFile("sr.prototxt", false), findDataFile("sr.caffemodel", false)); auto detector = wechat_qrcode::WeChatQRCode(); auto decoded_info = detector.detectAndDecode(src, points); const std::string dataset_config = findDataFile(root + "dataset_config.json"); FileStorage file_config(dataset_config, FileStorage::READ); ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config; { FileNode images_list = file_config["monitor_images"]; size_t images_count = static_cast(images_list.size()); ASSERT_GT(images_count, 0u) << "Can't find validation data entries in 'monitor_images': " << dataset_config; for (size_t index = 0; index < images_count; index++) { FileNode config = images_list[(int)index]; std::string name_test_image = config["image_name"]; if (name_test_image == name_current_image) { std::string original_info = config["info"]; string decoded_str; if (decoded_info.size()) { decoded_str = decoded_info[0]; } EXPECT_EQ(decoded_str, original_info); return; // done } } std::cerr << "Not found results for '" << name_current_image << "' image in config file:" << dataset_config << std::endl << "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data." << std::endl; } } typedef testing::TestWithParam Objdetect_QRCode_Curved; TEST_P(Objdetect_QRCode_Curved, regression) { const std::string name_current_image = GetParam(); const std::string root = "qrcode/curved/"; std::string image_path = findDataFile(root + name_current_image); Mat src = imread(image_path, IMREAD_GRAYSCALE); ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; vector points; // can not find the model file // so we temporarily comment it out // auto detector = wechat_qrcode::WeChatQRCode( // findDataFile("detect.prototxt", false), findDataFile("detect.caffemodel", false), // findDataFile("sr.prototxt", false), findDataFile("sr.caffemodel", false)); auto detector = wechat_qrcode::WeChatQRCode(); auto decoded_info = detector.detectAndDecode(src, points); const std::string dataset_config = findDataFile(root + "dataset_config.json"); FileStorage file_config(dataset_config, FileStorage::READ); ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config; { FileNode images_list = file_config["test_images"]; size_t images_count = static_cast(images_list.size()); ASSERT_GT(images_count, 0u) << "Can't find validation data entries in 'test_images': " << dataset_config; for (size_t index = 0; index < images_count; index++) { FileNode config = images_list[(int)index]; std::string name_test_image = config["image_name"]; if (name_test_image == name_current_image) { std::string original_info = config["info"]; string decoded_str; if (decoded_info.size()) { decoded_str = decoded_info[0]; } EXPECT_EQ(decoded_str, original_info); return; // done } } std::cerr << "Not found results for '" << name_current_image << "' image in config file:" << dataset_config << std::endl << "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data." << std::endl; } } typedef testing::TestWithParam Objdetect_QRCode_Multi; TEST_P(Objdetect_QRCode_Multi, regression) { const std::string name_current_image = GetParam(); const std::string root = "qrcode/multiple/"; string path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel; string model_version = "_2021-01"; path_detect_prototxt = findDataFile("dnn/wechat"+model_version+"/detect.prototxt", false); path_detect_caffemodel = findDataFile("dnn/wechat"+model_version+"/detect.caffemodel", false); path_sr_prototxt = findDataFile("dnn/wechat"+model_version+"/sr.prototxt", false); path_sr_caffemodel = findDataFile("dnn/wechat"+model_version+"/sr.caffemodel", false); std::string image_path = findDataFile(root + name_current_image); Mat src = imread(image_path); ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; vector points; auto detector = wechat_qrcode::WeChatQRCode(path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel); vector decoded_info = detector.detectAndDecode(src, points); const std::string dataset_config = findDataFile(root + "dataset_config.json"); FileStorage file_config(dataset_config, FileStorage::READ); ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config; { FileNode images_list = file_config["multiple_images"]; size_t images_count = static_cast(images_list.size()); ASSERT_GT(images_count, 0u) << "Can't find validation data entries in 'test_images': " << dataset_config; for (size_t index = 0; index < images_count; index++) { FileNode config = images_list[(int)index]; std::string name_test_image = config["image_name"]; if (name_test_image == name_current_image) { size_t count_eq_info = 0; for (int i = 0; i < int(decoded_info.size()); i++) { for (int j = 0; j < int(config["info"].size()); j++) { std::string original_info = config["info"][j]; if (original_info == decoded_info[i]) { count_eq_info++; break; } } } EXPECT_EQ(config["info"].size(), count_eq_info); return; // done } } std::cerr << "Not found results for '" << name_current_image << "' image in config file:" << dataset_config << std::endl << "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data." << std::endl; } } TEST(Objdetect_QRCode_points_position, rotate45) { string path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel; string model_version = "_2021-01"; path_detect_prototxt = findDataFile("dnn/wechat"+model_version+"/detect.prototxt", false); path_detect_caffemodel = findDataFile("dnn/wechat"+model_version+"/detect.caffemodel", false); path_sr_prototxt = findDataFile("dnn/wechat"+model_version+"/sr.prototxt", false); path_sr_caffemodel = findDataFile("dnn/wechat"+model_version+"/sr.caffemodel", false); auto detector = wechat_qrcode::WeChatQRCode(path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel); const cv::String expect_msg = "OpenCV"; QRCodeEncoder::Params params; params.version = 5; // 37x37 Ptr qrcode_enc = cv::QRCodeEncoder::create(params); Mat qrImage; qrcode_enc->encode(expect_msg, qrImage); Mat image(800, 800, CV_8UC1); const int pixInBlob = 4; Size qrSize = Size((21+(params.version-1)*4)*pixInBlob,(21+(params.version-1)*4)*pixInBlob); Rect2f rec(static_cast((image.cols - qrSize.width)/2), static_cast((image.rows - qrSize.height)/2), static_cast(qrSize.width), static_cast(qrSize.height)); vector goldCorners = {rec.x, rec.y, rec.x+rec.width, rec.y, rec.x+rec.width, rec.y+rec.height, rec.x, rec.y+rec.height}; Mat roiImage = image(rec); cv::resize(qrImage, roiImage, qrSize, 1., 1., INTER_NEAREST); vector points1; auto decoded_info1 = detector.detectAndDecode(image, points1); ASSERT_EQ(1ull, decoded_info1.size()); ASSERT_EQ(expect_msg, decoded_info1[0]); EXPECT_NEAR(0, cvtest::norm(Mat(goldCorners), points1[0].reshape(1, 8), NORM_INF), 8.); const double angle = 45; Point2f pc(image.cols/2.f, image.rows/2.f); Mat rot = getRotationMatrix2D(pc, angle, 1.); warpAffine(image, image, rot, image.size()); vector rotateGoldCorners; for (int i = 0; i < static_cast(goldCorners.size()); i+= 2) { rotateGoldCorners.push_back(static_cast(rot.at(0, 0) * goldCorners[i] + rot.at(0, 1) * goldCorners[i+1] + rot.at(0, 2))); rotateGoldCorners.push_back(static_cast(rot.at(1, 0) * goldCorners[i] + rot.at(1, 1) * goldCorners[i+1] + rot.at(1, 2))); } vector points2; auto decoded_info2 = detector.detectAndDecode(image, points2); ASSERT_EQ(1ull, decoded_info2.size()); ASSERT_EQ(expect_msg, decoded_info2[0]); EXPECT_NEAR(0, cvtest::norm(Mat(rotateGoldCorners), points2[0].reshape(1, 8), NORM_INF), 11.); } INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode, testing::ValuesIn(qrcode_images_name)); INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Close, testing::ValuesIn(qrcode_images_close)); INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Monitor, testing::ValuesIn(qrcode_images_monitor)); INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Curved, testing::ValuesIn(qrcode_images_curved)); INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Multi, testing::ValuesIn(qrcode_images_multiple)); TEST(Objdetect_QRCode_Big, regression) { string path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel; string model_version = "_2021-01"; path_detect_prototxt = findDataFile("dnn/wechat"+model_version+"/detect.prototxt", false); path_detect_caffemodel = findDataFile("dnn/wechat"+model_version+"/detect.caffemodel", false); path_sr_prototxt = findDataFile("dnn/wechat"+model_version+"/sr.prototxt", false); path_sr_caffemodel = findDataFile("dnn/wechat"+model_version+"/sr.caffemodel", false); auto detector = wechat_qrcode::WeChatQRCode(path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel); const cv::String expect_msg = "OpenCV"; QRCodeEncoder::Params params; params.version = 4; // 33x33 Ptr qrcode_enc = cv::QRCodeEncoder::create(params); Mat qrImage; qrcode_enc->encode(expect_msg, qrImage); Mat largeImage(4032, 3024, CV_8UC1); const int pixInBlob = 4; Size qrSize = Size((21+(params.version-1)*4)*pixInBlob,(21+(params.version-1)*4)*pixInBlob); Mat roiImage = largeImage(Rect((largeImage.cols - qrSize.width)/2, (largeImage.rows - qrSize.height)/2, qrSize.width, qrSize.height)); cv::resize(qrImage, roiImage, qrSize, 1., 1., INTER_NEAREST); vector points; detector.setScaleFactor(0.25f); auto decoded_info = detector.detectAndDecode(largeImage, points); ASSERT_EQ(1ull, decoded_info.size()); ASSERT_EQ(expect_msg, decoded_info[0]); } TEST(Objdetect_QRCode_Tiny, regression) { string path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel; string model_version = "_2021-01"; path_detect_prototxt = findDataFile("dnn/wechat"+model_version+"/detect.prototxt", false); path_detect_caffemodel = findDataFile("dnn/wechat"+model_version+"/detect.caffemodel", false); path_sr_prototxt = findDataFile("dnn/wechat"+model_version+"/sr.prototxt", false); path_sr_caffemodel = findDataFile("dnn/wechat"+model_version+"/sr.caffemodel", false); auto detector = wechat_qrcode::WeChatQRCode(path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel); const cv::String expect_msg = "OpenCV"; QRCodeEncoder::Params params; params.version = 4; // 33x33 Ptr qrcode_enc = cv::QRCodeEncoder::create(params); Mat qrImage; qrcode_enc->encode(expect_msg, qrImage); Mat tinyImage(80, 80, CV_8UC1); const int pixInBlob = 2; Size qrSize = Size((21+(params.version-1)*4)*pixInBlob,(21+(params.version-1)*4)*pixInBlob); Mat roiImage = tinyImage(Rect((tinyImage.cols - qrSize.width)/2, (tinyImage.rows - qrSize.height)/2, qrSize.width, qrSize.height)); cv::resize(qrImage, roiImage, qrSize, 1., 1., INTER_NEAREST); vector points; auto decoded_info = detector.detectAndDecode(tinyImage, points); ASSERT_EQ(1ull, decoded_info.size()); ASSERT_EQ(expect_msg, decoded_info[0]); } typedef testing::TestWithParam Objdetect_QRCode_Easy_Multi; TEST_P(Objdetect_QRCode_Easy_Multi, regression) { string path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel; string model_path = GetParam(); if (!model_path.empty()) { path_detect_prototxt = findDataFile(model_path + "/detect.prototxt", false); path_detect_caffemodel = findDataFile(model_path + "/detect.caffemodel", false); path_sr_prototxt = findDataFile(model_path + "/sr.prototxt", false); path_sr_caffemodel = findDataFile(model_path + "/sr.caffemodel", false); } auto detector = wechat_qrcode::WeChatQRCode(path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel); const cv::String expect_msg1 = "OpenCV1", expect_msg2 = "OpenCV2"; QRCodeEncoder::Params params; params.version = 4; // 33x33 Ptr qrcode_enc = cv::QRCodeEncoder::create(params); Mat qrImage1, qrImage2; qrcode_enc->encode(expect_msg1, qrImage1); qrcode_enc->encode(expect_msg2, qrImage2); const int pixInBlob = 2; const int offset = 14; const int qr_size = (params.version - 1) * 4 + 21; Mat tinyImage = Mat::zeros(qr_size*pixInBlob+offset, (qr_size*pixInBlob+offset)*2, CV_8UC1); Size qrSize = Size(qrImage1.cols, qrImage1.rows); Mat roiImage = tinyImage(Rect((tinyImage.cols/2 - qrSize.width)/2, (tinyImage.rows - qrSize.height)/2, qrSize.width, qrSize.height)); cv::resize(qrImage1, roiImage, qrSize, 1., 1., INTER_NEAREST); roiImage = tinyImage(Rect((tinyImage.cols/2 - qrSize.width)/2+tinyImage.cols/2, (tinyImage.rows - qrSize.height)/2, qrSize.width, qrSize.height)); cv::resize(qrImage2, roiImage, qrSize, 1., 1., INTER_NEAREST); vector points; auto decoded_info = detector.detectAndDecode(tinyImage, points); ASSERT_EQ(2ull, decoded_info.size()); ASSERT_TRUE((expect_msg1 == decoded_info[0] && expect_msg2 == decoded_info[1]) || (expect_msg1 == decoded_info[1] && expect_msg2 == decoded_info[0])); } std::string qrcode_model_path[] = {"", "dnn/wechat_2021-01"}; INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Easy_Multi, testing::ValuesIn(qrcode_model_path)); TEST(Objdetect_QRCode_bug, issue_3478) { auto detector = wechat_qrcode::WeChatQRCode(); std::string image_path = findDataFile("qrcode/issue_3478.png"); Mat src = imread(image_path, IMREAD_GRAYSCALE); ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path; std::vector outs = detector.detectAndDecode(src); ASSERT_EQ(1, (int) outs.size()); ASSERT_EQ(16, (int) outs[0].size()); ASSERT_EQ("KFCVW50 ", outs[0]); } } // namespace } // namespace opencv_test