#include "test_precomp.hpp" #define NO_COMPARISON namespace cvtest { TEST(xphoto_dctimagedenoising, regression) { cv::String dir = cvtest::TS::ptr()->get_data_path() + "dct_image_denoising/"; int nTests = 1; float psnrThreshold[] = {0.5}; int psize[] = {8}; double sigma[] = {9.0}; for (int i = 0; i < nTests; ++i) { cv::String srcName = dir + cv::format( "sources/%02d.png", i + 1); cv::Mat src = cv::imread( srcName, 1 ); cv::String previousResultName = dir + cv::format( "results/%02d.png", i + 1 ); cv::Mat previousResult = cv::imread( previousResultName, 1 ); cv::Mat sqrError = ( src - previousResult ).mul( src - previousResult ); cv::Scalar mse = cv::sum(sqrError) / cv::Scalar::all( sqrError.total()*sqrError.channels() ); double psnr = 10*log10(3*255*255/(mse[0] + mse[1] + mse[2])); cv::Mat currentResult, fastNlMeansResult; #ifndef NO_COMPARISON double currentTime = clock() / double(CLOCKS_PER_SEC); #endif cv::dctDenoising(src, currentResult, sigma[i], psize[i]); #ifndef NO_COMPARISON currentTime = clock() / double(CLOCKS_PER_SEC) - currentTime; std::cout << "---- dct denoising time = " << currentTime << " (sec) ----" << std::endl; #endif cv::Mat sqrError1 = ( currentResult - previousResult ) .mul( currentResult - previousResult ); cv::Scalar mse1 = cv::sum(sqrError1) / cv::Scalar::all( sqrError1.total()*sqrError1.channels() ); double psnr1 = 10*log10(3*255*255/(mse1[0] + mse1[1] + mse1[2])) - psnr; #ifndef NO_COMPARISON std::cout << "---- dct PSNR rate = " << psnr1 << " ----" << std::endl; #endif #ifndef NO_COMPARISON double fastNlMeansTime = clock() / double(CLOCKS_PER_SEC); if ( src.channels() == 3 ) cv::fastNlMeansDenoisingColored(src, fastNlMeansResult); else if ( src.channels() == 1 ) cv::fastNlMeansDenoising(src, fastNlMeansResult); fastNlMeansTime = clock() / double(CLOCKS_PER_SEC) - fastNlMeansTime; #ifdef NO_COMPARISON std::cout << "---- nonlocal means denoising time = " << fastNlMeansTime << " (sec) ----" << std::endl; #endif cv::Mat sqrError2 = ( fastNlMeansResult - previousResult ) .mul( fastNlMeansResult - previousResult ); cv::Scalar mse2 = cv::sum(sqrError2) / cv::Scalar::all( sqrError2.total()*sqrError2.channels() ); double psnr2 = 10*log10(3*255*255/(mse2[0] + mse2[1] + mse2[2])) - psnr; std::cout << "---- nonlocal means PSNR rate = " << psnr2 << " ----" << std::endl; #endif EXPECT_GE( psnr1, psnrThreshold[i] ); } } }