/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2015, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include #include namespace opencv_test { namespace { const string STRUCTURED_LIGHT_DIR = "structured_light"; const string FOLDER_DATA = "data"; TEST( SinusoidalPattern, unwrapPhaseMap ) { string folder = cvtest::TS::ptr()->get_data_path() + "/" + STRUCTURED_LIGHT_DIR + "/" + FOLDER_DATA + "/"; Ptr paramsPsp, paramsFtp, paramsFaps; paramsPsp = makePtr(); paramsFtp = makePtr(); paramsFaps = makePtr(); paramsFtp->methodId = 0; paramsPsp->methodId = 1; paramsFaps->methodId = 2; Ptr sinusPsp = structured_light::SinusoidalPattern::create(paramsPsp); Ptr sinusFtp = structured_light::SinusoidalPattern::create(paramsFtp); Ptr sinusFaps = structured_light::SinusoidalPattern::create(paramsFaps); vector captures(3); Mat unwrappedPhaseMapPspRef, unwrappedPhaseMapFtpRef, unwrappedPhaseMapFapsRef; Mat shadowMask; Mat wrappedPhaseMap, unwrappedPhaseMap, unwrappedPhaseMap8; captures[0] = imread(folder + "capture_sin_0.jpg", IMREAD_GRAYSCALE); captures[1] = imread(folder + "capture_sin_1.jpg", IMREAD_GRAYSCALE); captures[2] = imread(folder + "capture_sin_2.jpg", IMREAD_GRAYSCALE); unwrappedPhaseMapPspRef = imread(folder + "unwrappedPspTest.jpg", IMREAD_GRAYSCALE); unwrappedPhaseMapFtpRef = imread(folder + "unwrappedFtpTest.jpg", IMREAD_GRAYSCALE); unwrappedPhaseMapFapsRef = imread(folder + "unwrappedFapsTest.jpg", IMREAD_GRAYSCALE); if( !captures[0].data || !captures[1].data || !captures[2].data || !unwrappedPhaseMapFapsRef.data || !unwrappedPhaseMapFtpRef.data || !unwrappedPhaseMapPspRef.data ) { cerr << "invalid test data" << endl; } sinusPsp->computePhaseMap(captures, wrappedPhaseMap, shadowMask); sinusPsp->unwrapPhaseMap(wrappedPhaseMap, unwrappedPhaseMap, Size(captures[0].cols, captures[1].rows), shadowMask); unwrappedPhaseMap.convertTo(unwrappedPhaseMap8, CV_8U, 1, 128); int sumOfDiff = 0; int count = 0; float ratio = 0; for( int i = 0; i < unwrappedPhaseMap8.rows; ++i ) { for( int j = 0; j < unwrappedPhaseMap8.cols; ++j ) { int ref = unwrappedPhaseMapPspRef.at(i, j); int comp = unwrappedPhaseMap8.at(i, j); sumOfDiff += (ref - comp); count ++; } } ratio = (float)(sumOfDiff / count); EXPECT_LE( ratio, 0.003 ); sinusFtp->computePhaseMap(captures, wrappedPhaseMap, shadowMask); sinusFtp->unwrapPhaseMap(wrappedPhaseMap, unwrappedPhaseMap, Size(captures[0].cols, captures[1].rows), shadowMask); unwrappedPhaseMap.convertTo(unwrappedPhaseMap8, CV_8U, 1, 128); sumOfDiff = 0; count = 0; ratio = 0; for( int i = 0; i < unwrappedPhaseMap8.rows; ++i ) { for( int j = 0; j < unwrappedPhaseMap8.cols; ++j ) { int ref = unwrappedPhaseMapFtpRef.at(i, j); int comp = unwrappedPhaseMap8.at(i, j); sumOfDiff += (ref - comp); count ++; } } ratio = (float)(sumOfDiff / count); EXPECT_LE( ratio, 0.003 ); sinusFaps->computePhaseMap(captures, wrappedPhaseMap, shadowMask); sinusFaps->unwrapPhaseMap(wrappedPhaseMap, unwrappedPhaseMap, Size(captures[0].cols, captures[1].rows), shadowMask); unwrappedPhaseMap.convertTo(unwrappedPhaseMap8, CV_8U, 1, 128); sumOfDiff = 0; count = 0; ratio = 0; for( int i = 0; i < unwrappedPhaseMap8.rows; ++i ) { for( int j = 0; j < unwrappedPhaseMap8.cols; ++j ) { int ref = unwrappedPhaseMapFapsRef.at(i, j); int comp = unwrappedPhaseMap8.at(i, j); sumOfDiff += (ref - comp); count ++; } } ratio = (float)(sumOfDiff / count); EXPECT_LE( ratio, 0.003 ); } }} // namespace