/**M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include #include #include using namespace cv; using namespace cv::dnn; #include #include #include using namespace std; /* Find best class for the blob (i. e. class with maximal probability) */ void getMaxClass(dnn::Blob &probBlob, int *classId, double *classProb) { Mat probMat = probBlob.matRefConst().reshape(1, 1); //reshape the blob to 1x1000 matrix Point classNumber; minMaxLoc(probMat, NULL, classProb, NULL, &classNumber); *classId = classNumber.x; } std::vector readClassNames(const char *filename = "synset_words.txt") { std::vector classNames; std::ifstream fp(filename); if (!fp.is_open()) { std::cerr << "File with classes labels not found: " << filename << std::endl; exit(-1); } std::string name; while (!fp.eof()) { std::getline(fp, name); if (name.length()) classNames.push_back( name.substr(name.find(' ')+1) ); } fp.close(); return classNames; } int main(int argc, char **argv) { String modelTxt = "bvlc_googlenet.prototxt"; String modelBin = "bvlc_googlenet.caffemodel"; String imageFile = (argc > 1) ? argv[1] : "space_shuttle.jpg"; //! [Create the importer of Caffe model] Ptr importer; try //Try to import Caffe GoogleNet model { importer = dnn::createCaffeImporter(modelTxt, modelBin); } catch (const cv::Exception &err) //Importer can throw errors, we will catch them { std::cerr << err.msg << std::endl; } //! [Create the importer of Caffe model] if (!importer) { std::cerr << "Can't load network by using the following files: " << std::endl; std::cerr << "prototxt: " << modelTxt << std::endl; std::cerr << "caffemodel: " << modelBin << std::endl; std::cerr << "bvlc_googlenet.caffemodel can be downloaded here:" << std::endl; std::cerr << "http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel" << std::endl; exit(-1); } //! [Initialize network] dnn::Net net; importer->populateNet(net); importer.release(); //We don't need importer anymore //! [Initialize network] //! [Prepare blob] Mat img = imread(imageFile); if (img.empty()) { std::cerr << "Can't read image from the file: " << imageFile << std::endl; exit(-1); } resize(img, img, Size(224, 224)); //GoogLeNet accepts only 224x224 RGB-images dnn::Blob inputBlob = dnn::Blob(img); //Convert Mat to dnn::Blob image batch //! [Prepare blob] //! [Set input blob] net.setBlob(".data", inputBlob); //set the network input //! [Set input blob] //! [Make forward pass] net.forward(); //compute output //! [Make forward pass] //! [Gather output] dnn::Blob prob = net.getBlob("prob"); //gather output of "prob" layer int classId; double classProb; getMaxClass(prob, &classId, &classProb);//find the best class //! [Gather output] //! [Print results] std::vector classNames = readClassNames(); std::cout << "Best class: #" << classId << " '" << classNames.at(classId) << "'" << std::endl; std::cout << "Probability: " << classProb * 100 << "%" << std::endl; //! [Print results] return 0; } //main