#include "perf_precomp.hpp" namespace cvtest { using std::tr1::tuple; using std::tr1::get; using std::tr1::make_tuple; using std::make_pair; using namespace perf; using namespace testing; using namespace cv; using namespace cv::dnn; enum {STRIDE_OFF = 1, STRIDE_ON = 2}; CV_ENUM(StrideSize, STRIDE_OFF, STRIDE_ON); enum {GROUP_OFF = 1, GROUP_2 = 2}; CV_ENUM(GroupSize, GROUP_OFF, GROUP_2); //Squared Size #define SSZ(n) cv::Size(n, n) typedef std::pair InpShapeNumOut; typedef tuple ConvParam; //kernel_size, inp shape, groups, stride typedef TestBaseWithParam ConvolutionPerfTest; PERF_TEST_P( ConvolutionPerfTest, perf, Combine( Values(Size(1, 1), Size(3, 3), Size(5, 5), Size(11, 11)), Values(make_pair(BlobShape(1, 4, 224, 224), 64), make_pair(BlobShape(1, 64, 112, 122), 128), make_pair(BlobShape(1, 256, 28, 28), 512)), GroupSize::all(), StrideSize::all()) ) { RNG rng(0); ConvParam params = GetParam(); int ksz = get<0>(params).width; BlobShape inpShape = get<1>(params).first; int outCn = get<1>(params).second; int groups = get<2>(params); int stride = (ksz >= 11) ? 4 : (int)get<3>(params); int inpCn = inpShape[1]; Blob wgtBlob(BlobShape(outCn, inpCn/groups, ksz, ksz)), biasBlob(BlobShape(outCn, 1, 1, 1)); Blob inpBlob(inpShape); rng.fill(biasBlob.matRef(), RNG::UNIFORM, -1, +1); rng.fill(wgtBlob.matRef(), RNG::UNIFORM, -1, +1); rng.fill(inpBlob.matRef(), RNG::UNIFORM, -1, +1); LayerParams lp; lp.set("num_output", outCn); lp.set("group", groups); lp.set("stride", stride); lp.set("kernel_size", ksz); lp.blobs.reserve(2); lp.blobs.push_back(wgtBlob); lp.blobs.push_back(biasBlob); std::vector inpBlobs(1, &inpBlob); std::vector outBlobs; cv::setNumThreads(cv::getNumberOfCPUs()); Ptr layer = cv::dnn::LayerFactory::createLayerInstance("Convolution", lp); layer->allocate(inpBlobs, outBlobs); declare.in(inpBlob.matRef(), wgtBlob.matRef(), WARMUP_RNG).out(outBlobs[0].matRef()).tbb_threads(cv::getNumThreads()); TEST_CYCLE_N(10) { layer->forward(inpBlobs, outBlobs); } SANITY_CHECK_NOTHING(); } }