Tracker Algorithms ================== .. highlight:: cpp The following algorithms are implemented at the moment. .. [MIL] B Babenko, M-H Yang, and S Belongie, Visual Tracking with Online Multiple Instance Learning, In CVPR, 2009 .. [OLB] H Grabner, M Grabner, and H Bischof, Real-time tracking via on-line boosting, In Proc. BMVC, volume 1, pages 47– 56, 2006 TrackerBoosting --------------- This is a real-time object tracking based on a novel on-line version of the AdaBoost algorithm. The classifier uses the surrounding background as negative examples in update step to avoid the drifting problem. The implementation is based on [OLB]_. .. ocv:class:: TrackerBoosting Implementation of TrackerBoosting from :ocv:class:`Tracker`:: class CV_EXPORTS_W TrackerBoosting : public Tracker { public: TrackerBoosting( const TrackerBoosting::Params ¶meters = TrackerBoosting::Params() ); virtual ~TrackerBoosting(); void read( const FileNode& fn ); void write( FileStorage& fs ) const; }; TrackerBoosting::Params ----------------------------------------------------------------------- .. ocv:struct:: TrackerBoosting::Params List of BOOSTING parameters:: struct CV_EXPORTS Params { Params(); int numClassifiers; //the number of classifiers to use in a OnlineBoosting algorithm float samplerOverlap; //search region parameters to use in a OnlineBoosting algorithm float samplerSearchFactor; // search region parameters to use in a OnlineBoosting algorithm int iterationInit; //the initial iterations int featureSetNumFeatures; // #features void read( const FileNode& fn ); void write( FileStorage& fs ) const; }; TrackerBoosting::TrackerBoosting ----------------------------------------------------------------------- Constructor .. ocv:function:: bool TrackerBoosting::TrackerBoosting( const TrackerBoosting::Params ¶meters = TrackerBoosting::Params() ) :param parameters: BOOSTING parameters :ocv:struct:`TrackerBoosting::Params` TrackerMIL ---------- The MIL algorithm trains a classifier in an online manner to separate the object from the background. Multiple Instance Learning avoids the drift problem for a robust tracking. The implementation is based on [MIL]_. Original code can be found here http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml .. ocv:class:: TrackerMIL Implementation of TrackerMIL from :ocv:class:`Tracker`:: class CV_EXPORTS_W TrackerMIL : public Tracker { public: TrackerMIL( const TrackerMIL::Params ¶meters = TrackerMIL::Params() ); virtual ~TrackerMIL(); void read( const FileNode& fn ); void write( FileStorage& fs ) const; }; TrackerMIL::Params ------------------ .. ocv:struct:: TrackerMIL::Params List of MIL parameters:: struct CV_EXPORTS Params { Params(); //parameters for sampler float samplerInitInRadius; // radius for gathering positive instances during init int samplerInitMaxNegNum; // # negative samples to use during init float samplerSearchWinSize; // size of search window float samplerTrackInRadius; // radius for gathering positive instances during tracking int samplerTrackMaxPosNum; // # positive samples to use during tracking int samplerTrackMaxNegNum; // # negative samples to use during tracking int featureSetNumFeatures; // # features void read( const FileNode& fn ); void write( FileStorage& fs ) const; }; TrackerMIL::TrackerMIL ---------------------- Constructor .. ocv:function:: bool TrackerMIL::TrackerMIL( const TrackerMIL::Params ¶meters = TrackerMIL::Params() ) :param parameters: MIL parameters :ocv:struct:`TrackerMIL::Params`