//M*////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /****************************************************************************************\ * Very fast SAD-based (Sum-of-Absolute-Diffrences) stereo correspondence algorithm. * * Contributed by Kurt Konolige * \****************************************************************************************/ #include "precomp.hpp" #include #include namespace cv { struct StereoBinaryBMParams { StereoBinaryBMParams(int _numDisparities = 64, int _SADWindowSize = 9) { preFilterType = StereoBinaryBM::PREFILTER_XSOBEL; preFilterSize = 9; preFilterCap = 31; SADWindowSize = _SADWindowSize; minDisparity = 0; numDisparities = _numDisparities > 0 ? _numDisparities : 64; textureThreshold = 10; uniquenessRatio = 15; speckleRange = speckleWindowSize = 0; roi1 = roi2 = Rect(0, 0, 0, 0); disp12MaxDiff = -1; dispType = CV_16S; } int preFilterType; int preFilterSize; int preFilterCap; int SADWindowSize; int minDisparity; int numDisparities; int textureThreshold; int uniquenessRatio; int speckleRange; int speckleWindowSize; Rect roi1, roi2; int disp12MaxDiff; int dispType; }; static void prefilterNorm(const Mat& src, Mat& dst, int winsize, int ftzero, uchar* buf) { int x, y, wsz2 = winsize / 2; int* vsum = (int*)alignPtr(buf + (wsz2 + 1)*sizeof(vsum[0]), 32); int scale_g = winsize*winsize / 8, scale_s = (1024 + scale_g) / (scale_g * 2); const int OFS = 256 * 5, TABSZ = OFS * 2 + 256; uchar tab[TABSZ]; const uchar* sptr = src.ptr(); int srcstep = (int)src.step; Size size = src.size(); scale_g *= scale_s; for (x = 0; x < TABSZ; x++) tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero * 2 : x - OFS + ftzero); for (x = 0; x < size.width; x++) vsum[x] = (ushort)(sptr[x] * (wsz2 + 2)); for (y = 1; y < wsz2; y++) { for (x = 0; x < size.width; x++) vsum[x] = (ushort)(vsum[x] + sptr[srcstep*y + x]); } for (y = 0; y < size.height; y++) { const uchar* top = sptr + srcstep*MAX(y - wsz2 - 1, 0); const uchar* bottom = sptr + srcstep*MIN(y + wsz2, size.height - 1); const uchar* prev = sptr + srcstep*MAX(y - 1, 0); const uchar* curr = sptr + srcstep*y; const uchar* next = sptr + srcstep*MIN(y + 1, size.height - 1); uchar* dptr = dst.ptr(y); for (x = 0; x < size.width; x++) vsum[x] = (ushort)(vsum[x] + bottom[x] - top[x]); for (x = 0; x <= wsz2; x++) { vsum[-x - 1] = vsum[0]; vsum[size.width + x] = vsum[size.width - 1]; } int sum = vsum[0] * (wsz2 + 1); for (x = 1; x <= wsz2; x++) sum += vsum[x]; int val = ((curr[0] * 5 + curr[1] + prev[0] + next[0])*scale_g - sum*scale_s) >> 10; dptr[0] = tab[val + OFS]; for (x = 1; x < size.width - 1; x++) { sum += vsum[x + wsz2] - vsum[x - wsz2 - 1]; val = ((curr[x] * 4 + curr[x - 1] + curr[x + 1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10; dptr[x] = tab[val + OFS]; } sum += vsum[x + wsz2] - vsum[x - wsz2 - 1]; val = ((curr[x] * 5 + curr[x - 1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10; dptr[x] = tab[val + OFS]; } } static void prefilterXSobel(const Mat& src, Mat& dst, int ftzero) { int x, y; const int OFS = 256 * 4, TABSZ = OFS * 2 + 256; uchar tab[TABSZ]; Size size = src.size(); for (x = 0; x < TABSZ; x++) tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero * 2 : x - OFS + ftzero); uchar val0 = tab[0 + OFS]; #if CV_SSE2 volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2); #endif for (y = 0; y < size.height - 1; y += 2) { const uchar* srow1 = src.ptr(y); const uchar* srow0 = y > 0 ? srow1 - src.step : size.height > 1 ? srow1 + src.step : srow1; const uchar* srow2 = y < size.height - 1 ? srow1 + src.step : size.height > 1 ? srow1 - src.step : srow1; const uchar* srow3 = y < size.height - 2 ? srow1 + src.step * 2 : srow1; uchar* dptr0 = dst.ptr(y); uchar* dptr1 = dptr0 + dst.step; dptr0[0] = dptr0[size.width - 1] = dptr1[0] = dptr1[size.width - 1] = val0; x = 1; #if CV_SSE2 if (useSIMD) { __m128i z = _mm_setzero_si128(), ftz = _mm_set1_epi16((short)ftzero), ftz2 = _mm_set1_epi8(cv::saturate_cast(ftzero * 2)); for (; x <= size.width - 9; x += 8) { __m128i c0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow0 + x - 1)), z); __m128i c1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow1 + x - 1)), z); __m128i d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow0 + x + 1)), z); __m128i d1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow1 + x + 1)), z); d0 = _mm_sub_epi16(d0, c0); d1 = _mm_sub_epi16(d1, c1); __m128i c2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow2 + x - 1)), z); __m128i c3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow3 + x - 1)), z); __m128i d2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow2 + x + 1)), z); __m128i d3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow3 + x + 1)), z); d2 = _mm_sub_epi16(d2, c2); d3 = _mm_sub_epi16(d3, c3); __m128i v0 = _mm_add_epi16(d0, _mm_add_epi16(d2, _mm_add_epi16(d1, d1))); __m128i v1 = _mm_add_epi16(d1, _mm_add_epi16(d3, _mm_add_epi16(d2, d2))); v0 = _mm_packus_epi16(_mm_add_epi16(v0, ftz), _mm_add_epi16(v1, ftz)); v0 = _mm_min_epu8(v0, ftz2); _mm_storel_epi64((__m128i*)(dptr0 + x), v0); _mm_storel_epi64((__m128i*)(dptr1 + x), _mm_unpackhi_epi64(v0, v0)); } } #endif for (; x < size.width - 1; x++) { int d0 = srow0[x + 1] - srow0[x - 1], d1 = srow1[x + 1] - srow1[x - 1], d2 = srow2[x + 1] - srow2[x - 1], d3 = srow3[x + 1] - srow3[x - 1]; int v0 = tab[d0 + d1 * 2 + d2 + OFS]; int v1 = tab[d1 + d2 * 2 + d3 + OFS]; dptr0[x] = (uchar)v0; dptr1[x] = (uchar)v1; } } for (; y < size.height; y++) { uchar* dptr = dst.ptr(y); for (x = 0; x < size.width; x++) dptr[x] = val0; } } static const int DISPARITY_SHIFT = 4; static void findStereoCorrespondenceBM(const Mat& left, const Mat& right, Mat& disp, Mat& cost, const StereoBinaryBMParams& state, uchar* buf, int _dy0, int _dy1) { const int ALIGN = 16; int x, y, d; int wsz = state.SADWindowSize, wsz2 = wsz / 2; int dy0 = MIN(_dy0, wsz2 + 1), dy1 = MIN(_dy1, wsz2 + 1); int ndisp = state.numDisparities; int mindisp = state.minDisparity; int lofs = MAX(ndisp - 1 + mindisp, 0); int rofs = -MIN(ndisp - 1 + mindisp, 0); int width = left.cols, height = left.rows; int width1 = width - rofs - ndisp + 1; int ftzero = state.preFilterCap; int textureThreshold = state.textureThreshold; int uniquenessRatio = state.uniquenessRatio; short FILTERED = (short)((mindisp - 1) << DISPARITY_SHIFT); int *sad, *hsad0, *hsad, *hsad_sub, *htext; uchar *cbuf0, *cbuf; const uchar* lptr0 = left.ptr() + lofs; const uchar* rptr0 = right.ptr() + rofs; const uchar *lptr, *lptr_sub, *rptr; short* dptr = disp.ptr(); int sstep = (int)left.step; int dstep = (int)(disp.step / sizeof(dptr[0])); int cstep = (height + dy0 + dy1)*ndisp; int costbuf = 0; int coststep = cost.data ? (int)(cost.step / sizeof(costbuf)) : 0; const int TABSZ = 256; uchar tab[TABSZ]; sad = (int*)alignPtr(buf + sizeof(sad[0]), ALIGN); hsad0 = (int*)alignPtr(sad + ndisp + 1 + dy0*ndisp, ALIGN); htext = (int*)alignPtr((int*)(hsad0 + (height + dy1)*ndisp) + wsz2 + 2, ALIGN); cbuf0 = (uchar*)alignPtr((uchar*)(htext + height + wsz2 + 2) + dy0*ndisp, ALIGN); for (x = 0; x < TABSZ; x++) tab[x] = (uchar)std::abs(x - ftzero); // initialize buffers memset(hsad0 - dy0*ndisp, 0, (height + dy0 + dy1)*ndisp*sizeof(hsad0[0])); memset(htext - wsz2 - 1, 0, (height + wsz + 1)*sizeof(htext[0])); for (x = -wsz2 - 1; x < wsz2; x++) { hsad = hsad0 - dy0*ndisp; cbuf = cbuf0 + (x + wsz2 + 1)*cstep - dy0*ndisp; lptr = lptr0 + std::min(std::max(x, -lofs), width - lofs - 1) - dy0*sstep; rptr = rptr0 + std::min(std::max(x, -rofs), width - rofs - 1) - dy0*sstep; for (y = -dy0; y < height + dy1; y++, hsad += ndisp, cbuf += ndisp, lptr += sstep, rptr += sstep) { int lval = lptr[0]; for (d = 0; d < ndisp; d++) { int diff = std::abs(lval - rptr[d]); cbuf[d] = (uchar)diff; hsad[d] = (int)(hsad[d] + diff); } htext[y] += tab[lval]; } } // initialize the left and right borders of the disparity map for (y = 0; y < height; y++) { for (x = 0; x < lofs; x++) dptr[y*dstep + x] = FILTERED; for (x = lofs + width1; x < width; x++) dptr[y*dstep + x] = FILTERED; } dptr += lofs; for (x = 0; x < width1; x++, dptr++) { int* costptr = cost.data ? cost.ptr() + lofs + x : &costbuf; int x0 = x - wsz2 - 1, x1 = x + wsz2; const uchar* cbuf_sub = cbuf0 + ((x0 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp; cbuf = cbuf0 + ((x1 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp; hsad = hsad0 - dy0*ndisp; lptr_sub = lptr0 + MIN(MAX(x0, -lofs), width - 1 - lofs) - dy0*sstep; lptr = lptr0 + MIN(MAX(x1, -lofs), width - 1 - lofs) - dy0*sstep; rptr = rptr0 + MIN(MAX(x1, -rofs), width - 1 - rofs) - dy0*sstep; for (y = -dy0; y < height + dy1; y++, cbuf += ndisp, cbuf_sub += ndisp, hsad += ndisp, lptr += sstep, lptr_sub += sstep, rptr += sstep) { int lval = lptr[0]; for (d = 0; d < ndisp; d++) { int diff = std::abs(lval - rptr[d]); cbuf[d] = (uchar)diff; hsad[d] = hsad[d] + diff - cbuf_sub[d]; } htext[y] += tab[lval] - tab[lptr_sub[0]]; } // fill borders for (y = dy1; y <= wsz2; y++) htext[height + y] = htext[height + dy1 - 1]; for (y = -wsz2 - 1; y < -dy0; y++) htext[y] = htext[-dy0]; // initialize sums int tsum = 0; { for (d = 0; d < ndisp; d++) sad[d] = (int)(hsad0[d - ndisp*dy0] * (wsz2 + 2 - dy0)); hsad = hsad0 + (1 - dy0)*ndisp; for (y = 1 - dy0; y < wsz2; y++, hsad += ndisp) for (d = 0; d < ndisp; d++) sad[d] = (int)(sad[d] + hsad[d]); for (y = -wsz2 - 1; y < wsz2; y++) tsum += htext[y]; } // finally, start the real processing { for (y = 0; y < height; y++) { int minsad = INT_MAX, mind = -1; hsad = hsad0 + MIN(y + wsz2, height + dy1 - 1)*ndisp; hsad_sub = hsad0 + MAX(y - wsz2 - 1, -dy0)*ndisp; for (d = 0; d < ndisp; d++) { int currsad = sad[d] + hsad[d] - hsad_sub[d]; sad[d] = currsad; if (currsad < minsad) { minsad = currsad; mind = d; } } tsum += htext[y + wsz2] - htext[y - wsz2 - 1]; if (tsum < textureThreshold) { dptr[y*dstep] = FILTERED; continue; } if (uniquenessRatio > 0) { int thresh = minsad + (minsad * uniquenessRatio / 100); for (d = 0; d < ndisp; d++) { if ((d < mind - 1 || d > mind + 1) && sad[d] <= thresh) break; } if (d < ndisp) { dptr[y*dstep] = FILTERED; continue; } } { sad[-1] = sad[1]; sad[ndisp] = sad[ndisp - 2]; int p = sad[mind + 1], n = sad[mind - 1]; d = p + n - 2 * sad[mind] + std::abs(p - n); dptr[y*dstep] = (short)(((ndisp - mind - 1 + mindisp) * 256 + (d != 0 ? (p - n) * 256 / d : 0) + 15) >> 4); costptr[y*coststep] = sad[mind]; } } } } } struct PrefilterInvoker : public ParallelLoopBody { PrefilterInvoker(const Mat& left0, const Mat& right0, Mat& left, Mat& right, uchar* buf0, uchar* buf1, StereoBinaryBMParams* _state) { imgs0[0] = &left0; imgs0[1] = &right0; imgs[0] = &left; imgs[1] = &right; buf[0] = buf0; buf[1] = buf1; state = _state; } void operator()(const Range& range) const { for (int i = range.start; i < range.end; i++) { if (state->preFilterType == StereoBinaryBM::PREFILTER_NORMALIZED_RESPONSE) prefilterNorm(*imgs0[i], *imgs[i], state->preFilterSize, state->preFilterCap, buf[i]); else prefilterXSobel(*imgs0[i], *imgs[i], state->preFilterCap); } } const Mat* imgs0[2]; Mat* imgs[2]; uchar* buf[2]; StereoBinaryBMParams* state; }; struct FindStereoCorrespInvoker : public ParallelLoopBody { FindStereoCorrespInvoker(const Mat& _left, const Mat& _right, Mat& _disp, StereoBinaryBMParams* _state, int _nstripes, size_t _stripeBufSize, bool _useShorts, Rect _validDisparityRect, Mat& _slidingSumBuf, Mat& _cost) { left = &_left; right = &_right; disp = &_disp; state = _state; nstripes = _nstripes; stripeBufSize = _stripeBufSize; useShorts = _useShorts; validDisparityRect = _validDisparityRect; slidingSumBuf = &_slidingSumBuf; cost = &_cost; } void operator()(const Range& range) const { int cols = left->cols, rows = left->rows; int _row0 = std::min(cvRound(range.start * rows / nstripes), rows); int _row1 = std::min(cvRound(range.end * rows / nstripes), rows); uchar *ptr = slidingSumBuf->ptr() + range.start * stripeBufSize; int FILTERED = (state->minDisparity - 1) * 16; Rect roi = validDisparityRect & Rect(0, _row0, cols, _row1 - _row0); if (roi.height == 0) return; int row0 = roi.y; int row1 = roi.y + roi.height; Mat part; if (row0 > _row0) { part = disp->rowRange(_row0, row0); part = Scalar::all(FILTERED); } if (_row1 > row1) { part = disp->rowRange(row1, _row1); part = Scalar::all(FILTERED); } Mat left_i = left->rowRange(row0, row1); Mat right_i = right->rowRange(row0, row1); Mat disp_i = disp->rowRange(row0, row1); Mat cost_i = state->disp12MaxDiff >= 0 ? cost->rowRange(row0, row1) : Mat(); findStereoCorrespondenceBM(left_i, right_i, disp_i, cost_i, *state, ptr, row0, rows - row1); if (state->disp12MaxDiff >= 0) validateDisparity(disp_i, cost_i, state->minDisparity, state->numDisparities, state->disp12MaxDiff); if (roi.x > 0) { part = disp_i.colRange(0, roi.x); part = Scalar::all(FILTERED); } if (roi.x + roi.width < cols) { part = disp_i.colRange(roi.x + roi.width, cols); part = Scalar::all(FILTERED); } } protected: const Mat *left, *right; Mat* disp, *slidingSumBuf, *cost; StereoBinaryBMParams *state; int nstripes; size_t stripeBufSize; bool useShorts; Rect validDisparityRect; }; class StereoBinaryBMImpl : public StereoBinaryBM { public: StereoBinaryBMImpl() { params = StereoBinaryBMParams(); } StereoBinaryBMImpl(int _numDisparities, int _SADWindowSize) { params = StereoBinaryBMParams(_numDisparities, _SADWindowSize); } void compute(InputArray leftarr, InputArray rightarr, OutputArray disparr) { int dtype = disparr.fixedType() ? disparr.type() : params.dispType; Size leftsize = leftarr.size(); if (leftarr.size() != rightarr.size()) CV_Error(Error::StsUnmatchedSizes, "All the images must have the same size"); if (leftarr.type() != CV_8UC1 || rightarr.type() != CV_8UC1) CV_Error(Error::StsUnsupportedFormat, "Both input images must have CV_8UC1"); if (dtype != CV_16SC1 && dtype != CV_32FC1) CV_Error(Error::StsUnsupportedFormat, "Disparity image must have CV_16SC1 or CV_32FC1 format"); if (params.preFilterType != PREFILTER_NORMALIZED_RESPONSE && params.preFilterType != PREFILTER_XSOBEL) CV_Error(Error::StsOutOfRange, "preFilterType must be = CV_STEREO_BM_NORMALIZED_RESPONSE"); if (params.preFilterSize < 5 || params.preFilterSize > 255 || params.preFilterSize % 2 == 0) CV_Error(Error::StsOutOfRange, "preFilterSize must be odd and be within 5..255"); if (params.preFilterCap < 1 || params.preFilterCap > 63) CV_Error(Error::StsOutOfRange, "preFilterCap must be within 1..63"); if (params.SADWindowSize < 5 || params.SADWindowSize > 255 || params.SADWindowSize % 2 == 0 || params.SADWindowSize >= std::min(leftsize.width, leftsize.height)) CV_Error(Error::StsOutOfRange, "SADWindowSize must be odd, be within 5..255 and be not larger than image width or height"); if (params.numDisparities <= 0 || params.numDisparities % 16 != 0) CV_Error(Error::StsOutOfRange, "numDisparities must be positive and divisble by 16"); if (params.textureThreshold < 0) CV_Error(Error::StsOutOfRange, "texture threshold must be non-negative"); if (params.uniquenessRatio < 0) CV_Error(Error::StsOutOfRange, "uniqueness ratio must be non-negative"); int FILTERED = (params.minDisparity - 1) << DISPARITY_SHIFT; Mat left0 = leftarr.getMat(), right0 = rightarr.getMat(); disparr.create(left0.size(), dtype); Mat disp0 = disparr.getMat(); preFilteredImg0.create(left0.size(), CV_8U); preFilteredImg1.create(left0.size(), CV_8U); cost.create(left0.size(), CV_16S); Mat left = preFilteredImg0, right = preFilteredImg1; int mindisp = params.minDisparity; int ndisp = params.numDisparities; int width = left0.cols; int height = left0.rows; int lofs = std::max(ndisp - 1 + mindisp, 0); int rofs = -std::min(ndisp - 1 + mindisp, 0); int width1 = width - rofs - ndisp + 1; if (lofs >= width || rofs >= width || width1 < 1) { disp0 = Scalar::all(FILTERED * (disp0.type() < CV_32F ? 1 : 1. / (1 << DISPARITY_SHIFT))); return; } Mat disp = disp0; if (dtype == CV_32F) { dispbuf.create(disp0.size(), CV_16S); disp = dispbuf; } int wsz = params.SADWindowSize; int bufSize0 = (int)((ndisp + 2)*sizeof(int)); bufSize0 += (int)((height + wsz + 2)*ndisp*sizeof(int)); bufSize0 += (int)((height + wsz + 2)*sizeof(int)); bufSize0 += (int)((height + wsz + 2)*ndisp*(wsz + 2)*sizeof(uchar) + 256); int bufSize1 = (int)((width + params.preFilterSize + 2) * sizeof(int) + 256); int bufSize2 = 0; if (params.speckleRange >= 0 && params.speckleWindowSize > 0) bufSize2 = width*height*(sizeof(Point_) + sizeof(int) + sizeof(uchar)); #if CV_SSE2 bool useShorts = params.preFilterCap <= 31 && params.SADWindowSize <= 21 && checkHardwareSupport(CV_CPU_SSE2); #else const bool useShorts = false; #endif const double SAD_overhead_coeff = 10.0; double N0 = 8000000 / (useShorts ? 1 : 4); // approx tbb's min number instructions reasonable for one thread double maxStripeSize = std::min(std::max(N0 / (width * ndisp), (wsz - 1) * SAD_overhead_coeff), (double)height); int nstripes = cvCeil(height / maxStripeSize); int bufSize = std::max(bufSize0 * nstripes, std::max(bufSize1 * 2, bufSize2)); if (slidingSumBuf.cols < bufSize) slidingSumBuf.create(1, bufSize, CV_8U); uchar *_buf = slidingSumBuf.ptr(); parallel_for_(Range(0, 2), PrefilterInvoker(left0, right0, left, right, _buf, _buf + bufSize1, ¶ms), 1); Rect validDisparityRect(0, 0, width, height), R1 = params.roi1, R2 = params.roi2; validDisparityRect = getValidDisparityROI(R1.area() > 0 ? Rect(0, 0, width, height) : validDisparityRect, R2.area() > 0 ? Rect(0, 0, width, height) : validDisparityRect, params.minDisparity, params.numDisparities, params.SADWindowSize); parallel_for_(Range(0, nstripes), FindStereoCorrespInvoker(left, right, disp, ¶ms, nstripes, bufSize0, useShorts, validDisparityRect, slidingSumBuf, cost)); if (params.speckleRange >= 0 && params.speckleWindowSize > 0) filterSpeckles(disp, FILTERED, params.speckleWindowSize, params.speckleRange, slidingSumBuf); if (disp0.data != disp.data) disp.convertTo(disp0, disp0.type(), 1. / (1 << DISPARITY_SHIFT), 0); } int getMinDisparity() const { return params.minDisparity; } void setMinDisparity(int minDisparity) { params.minDisparity = minDisparity; } int getNumDisparities() const { return params.numDisparities; } void setNumDisparities(int numDisparities) { params.numDisparities = numDisparities; } int getBlockSize() const { return params.SADWindowSize; } void setBlockSize(int blockSize) { params.SADWindowSize = blockSize; } int getSpeckleWindowSize() const { return params.speckleWindowSize; } void setSpeckleWindowSize(int speckleWindowSize) { params.speckleWindowSize = speckleWindowSize; } int getSpeckleRange() const { return params.speckleRange; } void setSpeckleRange(int speckleRange) { params.speckleRange = speckleRange; } int getDisp12MaxDiff() const { return params.disp12MaxDiff; } void setDisp12MaxDiff(int disp12MaxDiff) { params.disp12MaxDiff = disp12MaxDiff; } int getPreFilterType() const { return params.preFilterType; } void setPreFilterType(int preFilterType) { params.preFilterType = preFilterType; } int getPreFilterSize() const { return params.preFilterSize; } void setPreFilterSize(int preFilterSize) { params.preFilterSize = preFilterSize; } int getPreFilterCap() const { return params.preFilterCap; } void setPreFilterCap(int preFilterCap) { params.preFilterCap = preFilterCap; } int getTextureThreshold() const { return params.textureThreshold; } void setTextureThreshold(int textureThreshold) { params.textureThreshold = textureThreshold; } int getUniquenessRatio() const { return params.uniquenessRatio; } void setUniquenessRatio(int uniquenessRatio) { params.uniquenessRatio = uniquenessRatio; } int getSmallerBlockSize() const { return 0; } void setSmallerBlockSize(int) {} Rect getROI1() const { return params.roi1; } void setROI1(Rect roi1) { params.roi1 = roi1; } Rect getROI2() const { return params.roi2; } void setROI2(Rect roi2) { params.roi2 = roi2; } void write(FileStorage& fs) const { fs << "name" << name_ << "minDisparity" << params.minDisparity << "numDisparities" << params.numDisparities << "blockSize" << params.SADWindowSize << "speckleWindowSize" << params.speckleWindowSize << "speckleRange" << params.speckleRange << "disp12MaxDiff" << params.disp12MaxDiff << "preFilterType" << params.preFilterType << "preFilterSize" << params.preFilterSize << "preFilterCap" << params.preFilterCap << "textureThreshold" << params.textureThreshold << "uniquenessRatio" << params.uniquenessRatio; } void read(const FileNode& fn) { FileNode n = fn["name"]; CV_Assert(n.isString() && String(n) == name_); params.minDisparity = (int)fn["minDisparity"]; params.numDisparities = (int)fn["numDisparities"]; params.SADWindowSize = (int)fn["blockSize"]; params.speckleWindowSize = (int)fn["speckleWindowSize"]; params.speckleRange = (int)fn["speckleRange"]; params.disp12MaxDiff = (int)fn["disp12MaxDiff"]; params.preFilterType = (int)fn["preFilterType"]; params.preFilterSize = (int)fn["preFilterSize"]; params.preFilterCap = (int)fn["preFilterCap"]; params.textureThreshold = (int)fn["textureThreshold"]; params.uniquenessRatio = (int)fn["uniquenessRatio"]; params.roi1 = params.roi2 = Rect(); } StereoBinaryBMParams params; Mat preFilteredImg0, preFilteredImg1, cost, dispbuf; Mat slidingSumBuf; static const char* name_; }; const char* StereoBinaryBMImpl::name_ = "StereoMatcher.BM"; Ptr StereoBinaryBM::create(int _numDisparities, int _SADWindowSize) { return makePtr(_numDisparities, _SADWindowSize); } } /* End of file. */