function detect(img::OpenCV.InputArray, cascade) rects = OpenCV.detectMultiScale(cascade, img) return (rects[1].x, rects[1].y, rects[1].width+rects[1].x, rects[1].height+rects[1].y) end function IOU(boxA, boxB) xA = max(boxA[1], boxB[1]) yA = max(boxA[2], boxB[2]) xB = min(boxA[3], boxB[3]) yB = min(boxA[4], boxB[4]) interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1) boxAArea = (boxA[3] - boxA[1] + 1) * (boxA[4] - boxA[2] + 1) boxBArea = (boxB[3] - boxB[1] + 1) * (boxB[4] - boxB[2] + 1) iou = interArea / float(boxAArea + boxBArea - interArea) return iou end cascade = OpenCV.CascadeClassifier(joinpath(test_dir, "cascadeandhog", "cascades", "haarcascade_frontalface_alt.xml")) img = OpenCV.imread(joinpath(test_dir, "cascadeandhog", "images", "mona-lisa.png"), OpenCV.IMREAD_GRAYSCALE) rect = detect(img, cascade) expected_rect = (164,119,306,261) @test IOU(rect, expected_rect) > 0.95 print("objdetect test passed\n")