using OpenCV const cv = OpenCV size0 = Int32(300) # take the model from https://github.com/opencv/opencv_extra/tree/master/testdata/dnn net = cv.dnn_DetectionModel("opencv_face_detector.pbtxt", "opencv_face_detector_uint8.pb") cv.dnn.setPreferableTarget(net, cv.dnn.DNN_TARGET_CPU) cv.dnn.setInputMean(net, (104, 177, 123)) cv.dnn.setInputScale(net, 1.) cv.dnn.setInputSize(net, size0, size0) cap = cv.VideoCapture(Int32(0)) while true ok, frame = cv.read(cap) if ok == false break end classIds, confidences, boxes = cv.dnn.detect(net, frame, confThreshold=Float32(0.5)) for i in 1:size(boxes,1) confidence = confidences[i] x0 = Int32(boxes[i].x) y0 = Int32(boxes[i].y) x1 = Int32(boxes[i].x+boxes[i].width) y1 = Int32(boxes[i].y+boxes[i].height) cv.rectangle(frame, cv.Point{Int32}(x0, y0), cv.Point{Int32}(x1, y1), (100, 255, 100); thickness = Int32(5)) label = "face: " * string(confidence) lsize, bl = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, Int32(1)) cv.rectangle(frame, cv.Point{Int32}(x0,y0), cv.Point{Int32}(x0+lsize.width, y0+lsize.height+bl), (100,255,100); thickness = Int32(-1)) cv.putText(frame, label, cv.Point{Int32}(x0, y0 + lsize.height), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0); thickness = Int32(1), lineType = cv.LINE_AA) end cv.imshow("detections", frame) if cv.waitKey(Int32(30)) >= 0 break end end