Tag:
Branch:
Tree:
d3630d0fa6
3.4
4.x
5.x
master
next
3.0.0
3.0.0-beta
3.0.0-rc1
3.1.0
3.2.0
3.2.0-rc
3.3.0
3.3.0-rc
3.3.1
3.4.0
3.4.1
3.4.10
3.4.11
3.4.12
3.4.13
3.4.14
3.4.15
3.4.16
3.4.17
3.4.18
3.4.19
3.4.2
3.4.20
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
4.0.0
4.0.0-alpha
4.0.0-beta
4.0.0-rc
4.0.1
4.1.0
4.1.1
4.1.2
4.10.0
4.11.0
4.2.0
4.3.0
4.4.0
4.5.0
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.6.0
4.7.0
4.8.0
4.8.1
4.9.0
5.0.0-alpha
${ noResults }
2 Commits (d3630d0fa6c56b90cc2b80c97fe0b4a958846c27)
Author | SHA1 | Message | Date |
---|---|---|---|
|
e310fc5549 |
face: refactoring
- change face detector interface - avoid using of legacy C-API defines - simplify CV_Error() - avoid using of legacy license headers |
8 years ago |
|
e85a802a90 |
Merge pull request #1257 from kurnianggoro:facelandmark
GSOC17 - Facemark API (#1257) * Initial commit of facemark API Initial structure of the facemark API and AAM header * make training function as virtual * Add: dataset parser * Bug fix: clear the container before add points * Add: AAM training - procrustes analysis * Add AAM model * Added training function for AAM * Building bot fixes: remove training overload, explicit cast to float for atof * + add dependency: imgcodecs * Build bot fixes: add imgproc.hpp and type casting * Building bot fix: type casting * fixing the AAM training to match with Matlab version fewer model parameters, change the image warp method, change the feature extraction method * add: AAM fitting added several functionalities for fitting * fix warings * Add: transformation for the initial fitting * add sample file for aam implementation * fix warning * Add LFB Header * loadTrainingData: Throw an error message if file not exist * add: LBF prepare training data * add: data augmentation * change to double * add: getMeanShape * shuffling the dataset and parameters initialization * add: initial structure of LBF class * add: getDeltaShapes Difference between the current shape and the desired shape * add: random forest training * generate lbf features * global regression * save training data * fix the parameter initialization * set the default parameters * add: initial version of lbf sample * update the current shape * compute error * add: prediction function * fix some warnings * fitting function the result is mis-aligned, shuould be double checked * add: fitting in the demo * add dependencies * Add: tutorial * add: load model * fixing training * use user defined face detector * Documents, tests, and samples * Allow custom parameters * Cleaning up * Custom parameters for default detector, training, and get custom data * AAM scales * minor fixes , update the opencv_extra files * change path to lbp cascade * face: avoid memory leaks * utilize the filestorage for the model, fixing some minor issues * remove the liblinear dependency * fix the aam test, avoiding to write any files * use RNG and changes the test files |
8 years ago |