|
|
|
@ -1,11 +1,10 @@ |
|
|
|
|
/*
|
|
|
|
|
* textdetection.cpp |
|
|
|
|
* cropped_word_recognition.cpp |
|
|
|
|
* |
|
|
|
|
* A demo program of End-to-end Scene Text Detection and Recognition: |
|
|
|
|
* Shows the use of the Tesseract OCR API with the Extremal Region Filter algorithm described in: |
|
|
|
|
* Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012 |
|
|
|
|
* A demo program of text recognition in a given cropped word. |
|
|
|
|
* Shows the use of the OCRBeamSearchDecoder class API using the provided default classifier. |
|
|
|
|
* |
|
|
|
|
* Created on: Jul 31, 2014 |
|
|
|
|
* Created on: Jul 9, 2015 |
|
|
|
|
* Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es> |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
@ -20,9 +19,9 @@ using namespace std; |
|
|
|
|
using namespace cv; |
|
|
|
|
using namespace cv::text; |
|
|
|
|
|
|
|
|
|
//Perform text recognition in a given cropped word
|
|
|
|
|
int main(int argc, char* argv[]) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
cout << endl << argv[0] << endl << endl; |
|
|
|
|
cout << "A demo program of Scene Text cropped word Recognition: " << endl; |
|
|
|
|
cout << "Shows the use of the OCRBeamSearchDecoder class using the Single Layer CNN character classifier described in:" << endl; |
|
|
|
@ -37,19 +36,34 @@ int main(int argc, char* argv[]) |
|
|
|
|
return(0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
string vocabulary = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyx0123456789"; // must have the same order as the clasifier output classes
|
|
|
|
|
vector<string> lexicon; // a list of words expected to be found on the input image
|
|
|
|
|
lexicon.push_back(string("abb")); |
|
|
|
|
lexicon.push_back(string("patata")); |
|
|
|
|
lexicon.push_back(string("CHINA")); |
|
|
|
|
lexicon.push_back(string("HERE")); |
|
|
|
|
lexicon.push_back(string("President")); |
|
|
|
|
lexicon.push_back(string("smash")); |
|
|
|
|
lexicon.push_back(string("KUALA")); |
|
|
|
|
lexicon.push_back(string("NINTENDO")); |
|
|
|
|
|
|
|
|
|
// Create tailored language model a small given lexicon
|
|
|
|
|
Mat transition_p; |
|
|
|
|
string filename = "OCRHMM_transitions_table.xml"; // TODO this table was done with a different vocabulary order?
|
|
|
|
|
// TODO add a new function in ocr.cpp to create transition tab
|
|
|
|
|
// for a given lexicon
|
|
|
|
|
createOCRHMMTransitionsTable(vocabulary,lexicon,transition_p); |
|
|
|
|
|
|
|
|
|
// An alternative would be to load the default generic language model
|
|
|
|
|
// (created from ispell 42869 english words list)
|
|
|
|
|
/*Mat transition_p;
|
|
|
|
|
string filename = "OCRHMM_transitions_table.xml"; // TODO use same order for voc
|
|
|
|
|
FileStorage fs(filename, FileStorage::READ); |
|
|
|
|
fs["transition_probabilities"] >> transition_p; |
|
|
|
|
fs.release(); |
|
|
|
|
fs.release();*/ |
|
|
|
|
|
|
|
|
|
Mat emission_p = Mat::eye(62,62,CV_64FC1); |
|
|
|
|
string voc = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyx0123456789"; |
|
|
|
|
|
|
|
|
|
Ptr<OCRBeamSearchDecoder> ocr = OCRBeamSearchDecoder::create( |
|
|
|
|
loadOCRBeamSearchClassifierCNN("OCRBeamSearch_CNN_model_data.xml.gz"), |
|
|
|
|
voc, transition_p, emission_p); |
|
|
|
|
vocabulary, transition_p, emission_p); |
|
|
|
|
|
|
|
|
|
double t_r = (double)getTickCount(); |
|
|
|
|
string output; |
|
|
|
|