Move binary testdata from opencv_contrib to opencv_extra

pull/265/head
Vitaliy Lyudvichenko 9 years ago
parent 57a21946e6
commit efde66414c
  1. 0
      modules/dnn/samples/caffe_googlenet.cpp
  2. 276
      modules/dnn/testdata/dnn/bvlc_alexnet.prototxt
  3. 2156
      modules/dnn/testdata/dnn/bvlc_googlenet.prototxt
  4. BIN
      modules/dnn/testdata/dnn/googlenet_0.jpg
  5. BIN
      modules/dnn/testdata/dnn/googlenet_1.jpg
  6. BIN
      modules/dnn/testdata/dnn/googlenet_prob.npy
  7. 166
      modules/dnn/testdata/dnn/gtsrb.prototxt
  8. BIN
      modules/dnn/testdata/dnn/layers/blob.npy
  9. BIN
      modules/dnn/testdata/dnn/layers/layer_convolution.caffemodel
  10. BIN
      modules/dnn/testdata/dnn/layers/layer_convolution.npy
  11. BIN
      modules/dnn/testdata/dnn/layers/layer_deconvolution.caffemodel
  12. BIN
      modules/dnn/testdata/dnn/layers/layer_deconvolution.input.npy
  13. BIN
      modules/dnn/testdata/dnn/layers/layer_deconvolution.npy
  14. BIN
      modules/dnn/testdata/dnn/layers/layer_inner_product.caffemodel
  15. BIN
      modules/dnn/testdata/dnn/layers/layer_inner_product.npy
  16. BIN
      modules/dnn/testdata/dnn/layers/layer_lrn_channels.npy
  17. BIN
      modules/dnn/testdata/dnn/layers/layer_lrn_spatial.npy
  18. BIN
      modules/dnn/testdata/dnn/layers/layer_mvn.npy
  19. BIN
      modules/dnn/testdata/dnn/layers/layer_pooling_ave.npy
  20. BIN
      modules/dnn/testdata/dnn/layers/layer_pooling_max.npy
  21. BIN
      modules/dnn/testdata/dnn/layers/layer_softmax.npy

@ -1,276 +0,0 @@
name: "AlexNet"
input: "data"
input_dim: 10
input_dim: 3
input_dim: 227
input_dim: 227
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1000
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "fc8"
top: "prob"
}

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

@ -1,166 +0,0 @@
name: "gtsrb"
input: "input"
input_dim: 1
input_dim: 3
input_dim: 48
input_dim: 48
layers {
bottom: "input"
top: "layer1"
name: "layer1"
type: CONVOLUTION
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 100
kernel_size: 7
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "tanh1"
bottom: "layer1"
top: "layer1"
type: TANH
}
layers {
bottom: "layer1"
top: "layer2"
name: "layer2"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "layer2"
top: "layer3"
name: "layer3"
type: CONVOLUTION
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 150
kernel_size: 4
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "tanh3"
bottom: "layer3"
top: "layer3"
type: TANH
}
layers {
bottom: "layer3"
top: "layer4"
name: "layer4"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "layer4"
top: "layer5"
name: "layer5"
type: CONVOLUTION
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 250
kernel_size: 4
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "tanh5"
bottom: "layer5"
top: "layer5"
type: TANH
}
layers {
bottom: "layer5"
top: "layer6"
name: "layer6"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "layer6"
top: "layer7"
name: "layer7"
type: INNER_PRODUCT
blobs_lr: 1
blobs_lr: 2
inner_product_param {
num_output: 300
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "tanh7"
bottom: "layer7"
top: "layer7"
type: TANH
}
layers {
bottom: "layer7"
top: "layer8"
name: "layer8"
type: INNER_PRODUCT
blobs_lr: 1
blobs_lr: 2
inner_product_param {
num_output: 43
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "loss"
top: "loss"
bottom: "layer8"
type: SOFTMAX
}

Binary file not shown.

Binary file not shown.
Loading…
Cancel
Save