parent
dca8904dbc
commit
ee934e29bb
6 changed files with 220 additions and 8 deletions
@ -1,3 +1,3 @@ |
||||
set(the_description "datasets tools") |
||||
ocv_define_module(datasetstools opencv_core) |
||||
ocv_define_module(datasetstools opencv_core opencv_face) |
||||
|
||||
|
@ -0,0 +1,175 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2014, Itseez Inc, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Itseez Inc or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "opencv2/core.hpp" |
||||
#include "opencv2/imgcodecs.hpp" |
||||
|
||||
#include "opencv2/face.hpp" |
||||
#include "opencv2/datasetstools/fr_lfw.hpp" |
||||
|
||||
#include <iostream> |
||||
|
||||
#include <cstdio> |
||||
|
||||
#include <string> |
||||
#include <vector> |
||||
#include <map> |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace cv::datasetstools; |
||||
using namespace cv::face; |
||||
|
||||
map<string, int> people; |
||||
|
||||
int getLabel(const string &imagePath); |
||||
int getLabel(const string &imagePath) |
||||
{ |
||||
size_t pos = imagePath.find('/'); |
||||
string curr = imagePath.substr(0, pos); |
||||
map<string, int>::iterator it = people.find(curr); |
||||
if (people.end() == it) |
||||
{ |
||||
people.insert(make_pair(curr, people.size())); |
||||
it = people.find(curr); |
||||
} |
||||
return (*it).second; |
||||
} |
||||
|
||||
int main(int argc, const char *argv[]) |
||||
{ |
||||
const char *keys = |
||||
"{ help h usage ? | | show this message }" |
||||
"{ path p |true| path to dataset (lfw2 folder) }"; |
||||
CommandLineParser parser(argc, argv, keys); |
||||
string path(parser.get<string>("path")); |
||||
if (parser.has("help") || path=="true") |
||||
{ |
||||
parser.printMessage(); |
||||
return -1; |
||||
} |
||||
|
||||
// These vectors hold the images and corresponding labels.
|
||||
vector<Mat> images; |
||||
vector<int> labels; |
||||
|
||||
// load dataset
|
||||
Ptr<FR_lfw> dataset = FR_lfw::create(); |
||||
dataset->load(path); |
||||
|
||||
unsigned int numSplits = dataset->getNumSplits(); |
||||
printf("splits number: %u\n", numSplits); |
||||
printf("train size: %u\n", (unsigned int)dataset->getTrain().size()); |
||||
printf("test size: %u\n", (unsigned int)dataset->getTest().size()); |
||||
|
||||
for (unsigned int i=0; i<dataset->getTrain().size(); ++i) |
||||
{ |
||||
FR_lfwObj *example = static_cast<FR_lfwObj *>(dataset->getTrain()[i].get()); |
||||
|
||||
int currNum = getLabel(example->image1); |
||||
Mat img = imread(path+example->image1, IMREAD_GRAYSCALE); |
||||
images.push_back(img); |
||||
labels.push_back(currNum); |
||||
|
||||
currNum = getLabel(example->image2); |
||||
img = imread(path+example->image2, IMREAD_GRAYSCALE); |
||||
images.push_back(img); |
||||
labels.push_back(currNum); |
||||
} |
||||
|
||||
// 2200 pairsDevTrain, first split: correct: 373, from: 600 -> 0.621667%
|
||||
Ptr<FaceRecognizer> model = createLBPHFaceRecognizer(); |
||||
// 2200 pairsDevTrain, first split: correct: correct: 369, from: 600 -> 0.615%
|
||||
//Ptr<FaceRecognizer> model = createEigenFaceRecognizer();
|
||||
// 2200 pairsDevTrain, first split: correct: 372, from: 600 -> 0.62%
|
||||
//Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
|
||||
|
||||
model->train(images, labels); |
||||
//string saveModelPath = "face-rec-model.txt";
|
||||
//cout << "Saving the trained model to " << saveModelPath << endl;
|
||||
//model->save(saveModelPath);
|
||||
|
||||
vector<double> p; |
||||
for (unsigned int j=0; j<numSplits; ++j) |
||||
{ |
||||
unsigned int incorrect = 0, correct = 0; |
||||
vector < Ptr<Object> > &curr = dataset->getTest(j); |
||||
for (unsigned int i=0; i<curr.size(); ++i) |
||||
{ |
||||
FR_lfwObj *example = static_cast<FR_lfwObj *>(curr[i].get()); |
||||
|
||||
//int currNum = getLabel(example->image1);
|
||||
Mat img = imread(path+example->image1, IMREAD_GRAYSCALE); |
||||
int predictedLabel1 = model->predict(img); |
||||
|
||||
//currNum = getLabel(example->image2);
|
||||
img = imread(path+example->image2, IMREAD_GRAYSCALE); |
||||
int predictedLabel2 = model->predict(img); |
||||
|
||||
if ((predictedLabel1 == predictedLabel2 && example->same) || |
||||
(predictedLabel1 != predictedLabel2 && !example->same)) |
||||
{ |
||||
correct++; |
||||
} else |
||||
{ |
||||
incorrect++; |
||||
} |
||||
} |
||||
p.push_back(1.0*correct/(correct+incorrect)); |
||||
printf("correct: %u, from: %u -> %f%%\n", correct, correct+incorrect, p.back()); |
||||
} |
||||
double mu = 0.0; |
||||
for (vector<double>::iterator it=p.begin(); it!=p.end(); ++it) |
||||
{ |
||||
mu += *it; |
||||
} |
||||
mu /= p.size(); |
||||
double sigma = 0.0; |
||||
for (vector<double>::iterator it=p.begin(); it!=p.end(); ++it) |
||||
{ |
||||
sigma += (*it - mu)*(*it - mu); |
||||
} |
||||
sigma = sqrt(sigma/p.size()); |
||||
double se = sigma/sqrt(p.size()); |
||||
printf("estimated mean accuracy: %f and the standard error of the mean: %f\n", mu, se); |
||||
|
||||
return 0; |
||||
} |
Loading…
Reference in new issue