|
|
@ -43,10 +43,10 @@ |
|
|
|
#include "opencv2/video/tracking.hpp" |
|
|
|
#include "opencv2/video/tracking.hpp" |
|
|
|
#include "opencv2/imgproc.hpp" |
|
|
|
#include "opencv2/imgproc.hpp" |
|
|
|
#include "time.h" |
|
|
|
#include "time.h" |
|
|
|
#include <algorithm> |
|
|
|
#include<algorithm> |
|
|
|
#include <limits.h> |
|
|
|
#include<limits.h> |
|
|
|
#include <math.h> |
|
|
|
#include<math.h> |
|
|
|
#include <opencv2/highgui.hpp> |
|
|
|
#include<opencv2/highgui.hpp> |
|
|
|
#include "tld_tracker.hpp" |
|
|
|
#include "tld_tracker.hpp" |
|
|
|
|
|
|
|
|
|
|
|
namespace cv {namespace tld |
|
|
|
namespace cv {namespace tld |
|
|
@ -57,26 +57,26 @@ Rect2d etalon(14.0,110.0,20.0,20.0); |
|
|
|
void drawWithRects(const Mat& img,std::vector<Rect2d>& blackOnes,Rect2d whiteOne){ |
|
|
|
void drawWithRects(const Mat& img,std::vector<Rect2d>& blackOnes,Rect2d whiteOne){ |
|
|
|
Mat image; |
|
|
|
Mat image; |
|
|
|
img.copyTo(image); |
|
|
|
img.copyTo(image); |
|
|
|
if(whiteOne.width>=0){ |
|
|
|
if(whiteOne.width >= 0){ |
|
|
|
rectangle( image,whiteOne, 255, 1, 1 ); |
|
|
|
rectangle( image,whiteOne, 255, 1, 1 ); |
|
|
|
} |
|
|
|
} |
|
|
|
for(int i=0;i<(int)blackOnes.size();i++){ |
|
|
|
for(int i = 0;i < (int)blackOnes.size();i++){ |
|
|
|
rectangle( image,blackOnes[i], 0, 1, 1 ); |
|
|
|
rectangle( image,blackOnes[i], 0, 1, 1 ); |
|
|
|
} |
|
|
|
} |
|
|
|
imshow("img",image); |
|
|
|
imshow("img",image); |
|
|
|
} |
|
|
|
} |
|
|
|
void drawWithRects(const Mat& img,std::vector<Rect2d>& blackOnes,std::vector<Rect2d>& whiteOnes,String filename){ |
|
|
|
void drawWithRects(const Mat& img,std::vector<Rect2d>& blackOnes,std::vector<Rect2d>& whiteOnes,String filename){ |
|
|
|
Mat image; |
|
|
|
Mat image; |
|
|
|
static int frameCounter=1; |
|
|
|
static int frameCounter = 1; |
|
|
|
img.copyTo(image); |
|
|
|
img.copyTo(image); |
|
|
|
for(int i=0;i<(int)whiteOnes.size();i++){ |
|
|
|
for(int i = 0;i < (int)whiteOnes.size();i++){ |
|
|
|
rectangle( image,whiteOnes[i], 255, 1, 1 ); |
|
|
|
rectangle( image,whiteOnes[i], 255, 1, 1 ); |
|
|
|
} |
|
|
|
} |
|
|
|
for(int i=0;i<(int)blackOnes.size();i++){ |
|
|
|
for(int i = 0;i < (int)blackOnes.size();i++){ |
|
|
|
rectangle( image,blackOnes[i], 0, 1, 1 ); |
|
|
|
rectangle( image,blackOnes[i], 0, 1, 1 ); |
|
|
|
} |
|
|
|
} |
|
|
|
imshow("img",image); |
|
|
|
imshow("img",image); |
|
|
|
if(filename.length()>0){ |
|
|
|
if(filename.length() > 0){ |
|
|
|
char inbuf[100]; |
|
|
|
char inbuf[100]; |
|
|
|
sprintf(inbuf,"%s%d.jpg",filename.c_str(),frameCounter); |
|
|
|
sprintf(inbuf,"%s%d.jpg",filename.c_str(),frameCounter); |
|
|
|
imwrite(inbuf,image); |
|
|
|
imwrite(inbuf,image); |
|
|
@ -84,20 +84,20 @@ void drawWithRects(const Mat& img,std::vector<Rect2d>& blackOnes,std::vector<Rec |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
void myassert(const Mat& img){ |
|
|
|
void myassert(const Mat& img){ |
|
|
|
int count=0; |
|
|
|
int count = 0; |
|
|
|
for(int i=0;i<img.rows;i++){ |
|
|
|
for(int i = 0;i < img.rows;i++){ |
|
|
|
for(int j=0;j<img.cols;j++){ |
|
|
|
for(int j = 0;j < img.cols;j++){ |
|
|
|
if(img.at<uchar>(i,j)==0){ |
|
|
|
if(img.at<uchar>(i,j) == 0){ |
|
|
|
count++; |
|
|
|
count++; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
dprintf(("black: %d out of %d (%f)\n",count,img.rows*img.cols,1.0*count/img.rows/img.cols)); |
|
|
|
dprintf(("black: %d out of %d (%f)\n",count,img.rows * img.cols,1.0 * count / img.rows / img.cols)); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void printPatch(const Mat_<uchar>& standardPatch){ |
|
|
|
void printPatch(const Mat_<uchar>& standardPatch){ |
|
|
|
for(int i=0;i<standardPatch.rows;i++){ |
|
|
|
for(int i = 0;i < standardPatch.rows;i++){ |
|
|
|
for(int j=0;j<standardPatch.cols;j++){ |
|
|
|
for(int j = 0;j < standardPatch.cols;j++){ |
|
|
|
dprintf(("%5.2f, ",(double)standardPatch(i,j))); |
|
|
|
dprintf(("%5.2f, ",(double)standardPatch(i,j))); |
|
|
|
} |
|
|
|
} |
|
|
|
dprintf(("\n")); |
|
|
|
dprintf(("\n")); |
|
|
@ -105,11 +105,11 @@ void printPatch(const Mat_<uchar>& standardPatch){ |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
std::string type2str(const Mat& mat){ |
|
|
|
std::string type2str(const Mat& mat){ |
|
|
|
int type=mat.type(); |
|
|
|
int type = mat.type(); |
|
|
|
std::string r; |
|
|
|
std::string r; |
|
|
|
|
|
|
|
|
|
|
|
uchar depth = type & CV_MAT_DEPTH_MASK; |
|
|
|
uchar depth = type & CV_MAT_DEPTH_MASK; |
|
|
|
uchar chans =(uchar)( 1 + (type >> CV_CN_SHIFT)); |
|
|
|
uchar chans = (uchar)(1 + (type >> CV_CN_SHIFT)); |
|
|
|
|
|
|
|
|
|
|
|
switch ( depth ) { |
|
|
|
switch ( depth ) { |
|
|
|
case CV_8U: r = "8U"; break; |
|
|
|
case CV_8U: r = "8U"; break; |
|
|
@ -123,31 +123,31 @@ std::string type2str(const Mat& mat){ |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
r += "C"; |
|
|
|
r += "C"; |
|
|
|
r += (chans+'0'); |
|
|
|
r += (chans + '0'); |
|
|
|
|
|
|
|
|
|
|
|
return r; |
|
|
|
return r; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
//generic functions
|
|
|
|
//generic functions
|
|
|
|
double scaleAndBlur(const Mat& originalImg,int scale,Mat& scaledImg,Mat& blurredImg,Size GaussBlurKernelSize){ |
|
|
|
double scaleAndBlur(const Mat& originalImg,int scale,Mat& scaledImg,Mat& blurredImg,Size GaussBlurKernelSize, double scaleStep){ |
|
|
|
double dScale=1.0; |
|
|
|
double dScale = 1.0; |
|
|
|
for(int i=0;i<scale;i++,dScale*=1.2); |
|
|
|
for(int i = 0; i < scale; i++, dScale *= scaleStep); |
|
|
|
Size2d size=originalImg.size(); |
|
|
|
Size2d size = originalImg.size(); |
|
|
|
size.height/=dScale;size.width/=dScale; |
|
|
|
size.height /= dScale; size.width /= dScale; |
|
|
|
resize(originalImg,scaledImg,size); |
|
|
|
resize(originalImg,scaledImg,size); |
|
|
|
GaussianBlur(scaledImg,blurredImg,GaussBlurKernelSize,0.0); |
|
|
|
GaussianBlur(scaledImg,blurredImg,GaussBlurKernelSize,0.0); |
|
|
|
return dScale; |
|
|
|
return dScale; |
|
|
|
} |
|
|
|
} |
|
|
|
void getClosestN(std::vector<Rect2d>& scanGrid,Rect2d bBox,int n,std::vector<Rect2d>& res){ |
|
|
|
void getClosestN(std::vector<Rect2d>& scanGrid,Rect2d bBox,int n,std::vector<Rect2d>& res){ |
|
|
|
if(n>=(int)scanGrid.size()){ |
|
|
|
if(n >= (int)scanGrid.size()){ |
|
|
|
res.assign(scanGrid.begin(),scanGrid.end()); |
|
|
|
res.assign(scanGrid.begin(),scanGrid.end()); |
|
|
|
return; |
|
|
|
return; |
|
|
|
} |
|
|
|
} |
|
|
|
std::vector<double> overlaps; |
|
|
|
std::vector<double> overlaps; |
|
|
|
overlaps.assign(n,0.0); |
|
|
|
overlaps.assign(n,0.0); |
|
|
|
res.assign(scanGrid.begin(),scanGrid.begin()+n); |
|
|
|
res.assign(scanGrid.begin(),scanGrid.begin() + n); |
|
|
|
for(int i=0;i<n;i++){ |
|
|
|
for(int i = 0;i < n;i++){ |
|
|
|
overlaps[i]=overlap(res[i],bBox); |
|
|
|
overlaps[i] = overlap(res[i],bBox); |
|
|
|
} |
|
|
|
} |
|
|
|
double otmp; |
|
|
|
double otmp; |
|
|
|
Rect2d rtmp; |
|
|
|
Rect2d rtmp; |
|
|
@ -160,142 +160,144 @@ void getClosestN(std::vector<Rect2d>& scanGrid,Rect2d bBox,int n,std::vector<Rec |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
for(int i=n;i<(int)scanGrid.size();i++){ |
|
|
|
for(int i = n;i < (int)scanGrid.size();i++){ |
|
|
|
double o=0.0; |
|
|
|
double o = 0.0; |
|
|
|
if((o=overlap(scanGrid[i],bBox))<=overlaps[0]){ |
|
|
|
if((o = overlap(scanGrid[i],bBox)) <= overlaps[0]){ |
|
|
|
continue; |
|
|
|
continue; |
|
|
|
} |
|
|
|
} |
|
|
|
int j=0; |
|
|
|
int j = 0; |
|
|
|
while( j < n && overlaps[j] < o ) |
|
|
|
while( j < n && overlaps[j] < o ) |
|
|
|
{ |
|
|
|
{ |
|
|
|
j++; |
|
|
|
j++; |
|
|
|
} |
|
|
|
} |
|
|
|
j--; |
|
|
|
j--; |
|
|
|
for(int k=0;k<j;overlaps[k]=overlaps[k+1],res[k]=res[k+1],k++); |
|
|
|
for(int k = 0;k < j;overlaps[k] = overlaps[k + 1],res[k] = res[k + 1],k++); |
|
|
|
overlaps[j]=o;res[j]=scanGrid[i]; |
|
|
|
overlaps[j] = o;res[j] = scanGrid[i]; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
double variance(const Mat& img){ |
|
|
|
double variance(const Mat& img){ |
|
|
|
double p=0,p2=0; |
|
|
|
double p = 0,p2 = 0; |
|
|
|
for(int i=0;i<img.rows;i++){ |
|
|
|
for(int i = 0;i < img.rows;i++){ |
|
|
|
for(int j=0;j<img.cols;j++){ |
|
|
|
for(int j = 0;j < img.cols;j++){ |
|
|
|
p+=img.at<uchar>(i,j); |
|
|
|
p += img.at<uchar>(i,j); |
|
|
|
p2+=img.at<uchar>(i,j)*img.at<uchar>(i,j); |
|
|
|
p2 += img.at<uchar>(i,j) * img.at<uchar>(i,j); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
p/=(img.cols*img.rows); |
|
|
|
p /= (img.cols * img.rows); |
|
|
|
p2/=(img.cols*img.rows); |
|
|
|
p2 /= (img.cols * img.rows); |
|
|
|
return p2-p*p; |
|
|
|
return p2 - p * p; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
double NCC(const Mat_<uchar>& patch1,const Mat_<uchar>& patch2){ |
|
|
|
double NCC(const Mat_<uchar>& patch1,const Mat_<uchar>& patch2){ |
|
|
|
CV_Assert(patch1.rows==patch2.rows); |
|
|
|
CV_Assert(patch1.rows == patch2.rows); |
|
|
|
CV_Assert(patch1.cols==patch2.cols); |
|
|
|
CV_Assert(patch1.cols == patch2.cols); |
|
|
|
|
|
|
|
|
|
|
|
int N=patch1.rows*patch1.cols; |
|
|
|
int N = patch1.rows * patch1.cols; |
|
|
|
int s1=0,s2=0,n1=0,n2=0,prod=0; |
|
|
|
int s1 = 0,s2 = 0,n1 = 0,n2 = 0,prod = 0; |
|
|
|
for(int i=0;i<patch1.rows;i++){ |
|
|
|
for(int i = 0;i < patch1.rows;i++){ |
|
|
|
for(int j=0;j<patch1.cols;j++){ |
|
|
|
for(int j = 0;j < patch1.cols;j++){ |
|
|
|
int p1=patch1(i,j), p2=patch2(i,j); |
|
|
|
int p1 = patch1(i,j), p2 = patch2(i,j); |
|
|
|
s1+=p1; s2+=p2; |
|
|
|
s1 += p1; s2 += p2; |
|
|
|
n1+=(p1*p1); n2+=(p2*p2); |
|
|
|
n1 += (p1 * p1); n2 += (p2 * p2); |
|
|
|
prod+=(p1*p2); |
|
|
|
prod += (p1 * p2); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
double sq1=sqrt(std::max(0.0,n1-1.0*s1*s1/N)),sq2=sqrt(std::max(0.0,n2-1.0*s2*s2/N)); |
|
|
|
double sq1 = sqrt(std::max(0.0,n1 - 1.0 * s1 * s1 / N)),sq2 = sqrt(std::max(0.0,n2 - 1.0 * s2 * s2 / N)); |
|
|
|
double ares=(sq2==0)?sq1/abs(sq1):(prod-s1*s2/N)/sq1/sq2; |
|
|
|
double ares = (sq2 == 0) ? sq1 / abs(sq1) : (prod - s1 * s2 / N) / sq1 / sq2; |
|
|
|
return ares; |
|
|
|
return ares; |
|
|
|
} |
|
|
|
} |
|
|
|
unsigned int getMedian(const std::vector<unsigned int>& values, int size){ |
|
|
|
int getMedian(const std::vector<int>& values, int size){ |
|
|
|
if(size==-1){ |
|
|
|
if(size == -1){ |
|
|
|
size=(int)values.size(); |
|
|
|
size = (int)values.size(); |
|
|
|
} |
|
|
|
} |
|
|
|
std::vector<int> copy(values.begin(),values.begin()+size); |
|
|
|
std::vector<int> copy(values.begin(),values.begin() + size); |
|
|
|
std::sort(copy.begin(),copy.end()); |
|
|
|
std::sort(copy.begin(),copy.end()); |
|
|
|
if(size%2==0){ |
|
|
|
if(size % 2 == 0){ |
|
|
|
return (copy[size/2-1]+copy[size/2])/2; |
|
|
|
return (copy[size / 2 - 1] + copy[size / 2]) / 2; |
|
|
|
}else{ |
|
|
|
}else{ |
|
|
|
return copy[(size-1)/2]; |
|
|
|
return copy[(size - 1) / 2]; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
double overlap(const Rect2d& r1,const Rect2d& r2){ |
|
|
|
double overlap(const Rect2d& r1,const Rect2d& r2){ |
|
|
|
double a1=r1.area(), a2=r2.area(), a0=(r1&r2).area(); |
|
|
|
double a1 = r1.area(), a2 = r2.area(), a0 = (r1&r2).area(); |
|
|
|
return a0/(a1+a2-a0); |
|
|
|
return a0 / (a1 + a2 - a0); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void resample(const Mat& img,const RotatedRect& r2,Mat_<uchar>& samples){ |
|
|
|
void resample(const Mat& img,const RotatedRect& r2,Mat_<uchar>& samples){ |
|
|
|
Mat_<float> M(2,3),R(2,2),Si(2,2),s(2,1),o(2,1); |
|
|
|
Mat_<float> M(2,3),R(2,2),Si(2,2),s(2,1),o(2,1); |
|
|
|
R(0,0)=(float)cos(r2.angle*CV_PI/180);R(0,1)=(float)(-sin(r2.angle*CV_PI/180)); |
|
|
|
R(0,0) = (float)cos(r2.angle * CV_PI / 180);R(0,1) = (float)(-sin(r2.angle * CV_PI / 180)); |
|
|
|
R(1,0)=(float)sin(r2.angle*CV_PI/180);R(1,1)=(float)cos(r2.angle*CV_PI/180); |
|
|
|
R(1,0) = (float)sin(r2.angle * CV_PI / 180);R(1,1) = (float)cos(r2.angle * CV_PI / 180); |
|
|
|
Si(0,0)=(float)(samples.cols/r2.size.width); Si(0,1)=0.0f; |
|
|
|
Si(0,0) = (float)(samples.cols / r2.size.width); Si(0,1) = 0.0f; |
|
|
|
Si(1,0)=0.0f; Si(1,1)=(float)(samples.rows/r2.size.height); |
|
|
|
Si(1,0) = 0.0f; Si(1,1) = (float)(samples.rows / r2.size.height); |
|
|
|
s(0,0)=(float)samples.cols; s(1,0)=(float)samples.rows; |
|
|
|
s(0,0) = (float)samples.cols; s(1,0) = (float)samples.rows; |
|
|
|
o(0,0)=r2.center.x;o(1,0)=r2.center.y; |
|
|
|
o(0,0) = r2.center.x;o(1,0) = r2.center.y; |
|
|
|
Mat_<float> A(2,2),b(2,1); |
|
|
|
Mat_<float> A(2,2),b(2,1); |
|
|
|
A=Si*R; |
|
|
|
A = Si * R; |
|
|
|
b=s/2.0-Si*R*o; |
|
|
|
b = s / 2.0 - Si * R * o; |
|
|
|
A.copyTo(M.colRange(Range(0,2))); |
|
|
|
A.copyTo(M.colRange(Range(0,2))); |
|
|
|
b.copyTo(M.colRange(Range(2,3))); |
|
|
|
b.copyTo(M.colRange(Range(2,3))); |
|
|
|
warpAffine(img,samples,M,samples.size()); |
|
|
|
warpAffine(img,samples,M,samples.size()); |
|
|
|
} |
|
|
|
} |
|
|
|
void resample(const Mat& img,const Rect2d& r2,Mat_<uchar>& samples){ |
|
|
|
void resample(const Mat& img,const Rect2d& r2,Mat_<uchar>& samples){ |
|
|
|
Mat_<float> M(2,3); |
|
|
|
Mat_<float> M(2,3); |
|
|
|
M(0,0)=(float)(samples.cols/r2.width); M(0,1)=0.0f; M(0,2)=(float)(-r2.x*samples.cols/r2.width); |
|
|
|
M(0,0) = (float)(samples.cols / r2.width); M(0,1) = 0.0f; M(0,2) = (float)(-r2.x * samples.cols / r2.width); |
|
|
|
M(1,0)=0.0f; M(1,1)=(float)(samples.rows/r2.height); M(1,2)=(float)(-r2.y*samples.rows/r2.height); |
|
|
|
M(1,0) = 0.0f; M(1,1) = (float)(samples.rows / r2.height); M(1,2) = (float)(-r2.y * samples.rows / r2.height); |
|
|
|
warpAffine(img,samples,M,samples.size()); |
|
|
|
warpAffine(img,samples,M,samples.size()); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
//other stuff
|
|
|
|
//other stuff
|
|
|
|
void TLDEnsembleClassifier::stepPrefSuff(std::vector<Vec4b>& arr,int pos,int len,int gridSize){ |
|
|
|
void TLDEnsembleClassifier::stepPrefSuff(std::vector<Vec4b>& arr,int pos,int len,int gridSize){ |
|
|
|
#if 0 |
|
|
|
#if 0 |
|
|
|
int step=len/(gridSize-1), pref=(len-step*(gridSize-1))/2; |
|
|
|
int step = len / (gridSize - 1), pref = (len - step * (gridSize - 1)) / 2; |
|
|
|
for(int i=0;i<(int)(sizeof(x1)/sizeof(x1[0]));i++){ |
|
|
|
for(int i = 0;i < (int)(sizeof(x1) / sizeof(x1[0]));i++){ |
|
|
|
arr[i]=pref+arr[i]*step; |
|
|
|
arr[i] = pref + arr[i] * step; |
|
|
|
} |
|
|
|
} |
|
|
|
#else |
|
|
|
#else |
|
|
|
int total=len-gridSize; |
|
|
|
int total = len - gridSize; |
|
|
|
int quo=total/(gridSize-1),rem=total%(gridSize-1); |
|
|
|
int quo = total / (gridSize - 1),rem = total % (gridSize - 1); |
|
|
|
int smallStep=quo,bigStep=quo+1; |
|
|
|
int smallStep = quo,bigStep = quo + 1; |
|
|
|
int bigOnes=rem,smallOnes=gridSize-bigOnes-1; |
|
|
|
int bigOnes = rem,smallOnes = gridSize - bigOnes - 1; |
|
|
|
int bigOnes_front=bigOnes/2,bigOnes_back=bigOnes-bigOnes_front; |
|
|
|
int bigOnes_front = bigOnes / 2, bigOnes_back = bigOnes - bigOnes_front; |
|
|
|
for(int i=0;i<(int)arr.size();i++){ |
|
|
|
for(int i = 0;i < (int)arr.size();i++){ |
|
|
|
if(arr[i].val[pos]<bigOnes_back){ |
|
|
|
if(arr[i].val[pos] < bigOnes_back){ |
|
|
|
arr[i].val[pos]=(uchar)(arr[i].val[pos]*bigStep+arr[i].val[pos]); |
|
|
|
arr[i].val[pos] = (uchar)(arr[i].val[pos] * bigStep + arr[i].val[pos]); |
|
|
|
continue; |
|
|
|
continue; |
|
|
|
} |
|
|
|
} |
|
|
|
if(arr[i].val[pos]<(bigOnes_front+smallOnes)){ |
|
|
|
if(arr[i].val[pos] < (bigOnes_front + smallOnes)){ |
|
|
|
arr[i].val[pos]=(uchar)(bigOnes_front*bigStep+(arr[i].val[pos]-bigOnes_front)*smallStep+arr[i].val[pos]); |
|
|
|
arr[i].val[pos] = (uchar)(bigOnes_front * bigStep + (arr[i].val[pos] - bigOnes_front) * smallStep + arr[i].val[pos]); |
|
|
|
continue; |
|
|
|
continue; |
|
|
|
} |
|
|
|
} |
|
|
|
if(arr[i].val[pos]<(bigOnes_front+smallOnes+bigOnes_back)){ |
|
|
|
if(arr[i].val[pos] < (bigOnes_front + smallOnes + bigOnes_back)){ |
|
|
|
arr[i].val[pos]= |
|
|
|
arr[i].val[pos] = |
|
|
|
(uchar)(bigOnes_front*bigStep+smallOnes*smallStep+(arr[i].val[pos]-(bigOnes_front+smallOnes))*bigStep+arr[i].val[pos]); |
|
|
|
(uchar)(bigOnes_front * bigStep + smallOnes * smallStep +
|
|
|
|
|
|
|
|
(arr[i].val[pos] - (bigOnes_front + smallOnes)) * bigStep + arr[i].val[pos]); |
|
|
|
continue; |
|
|
|
continue; |
|
|
|
} |
|
|
|
} |
|
|
|
arr[i].val[pos]=(uchar)(len-1); |
|
|
|
arr[i].val[pos] = (uchar)(len - 1); |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
} |
|
|
|
} |
|
|
|
void TLDEnsembleClassifier::prepareClassifier(int rowstep){ |
|
|
|
void TLDEnsembleClassifier::prepareClassifier(int rowstep){ |
|
|
|
if(lastStep_!=rowstep){ |
|
|
|
if(lastStep_ != rowstep){ |
|
|
|
lastStep_=rowstep; |
|
|
|
lastStep_ = rowstep; |
|
|
|
for(int i=0;i<(int)offset.size();i++){ |
|
|
|
for(int i = 0;i < (int)offset.size();i++){ |
|
|
|
offset[i].x=rowstep*measurements[i].val[0]+measurements[i].val[1]; |
|
|
|
offset[i].x = rowstep * measurements[i].val[0] + measurements[i].val[1]; |
|
|
|
offset[i].y=rowstep*measurements[i].val[2]+measurements[i].val[3]; |
|
|
|
offset[i].y = rowstep * measurements[i].val[2] + measurements[i].val[3]; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
TLDEnsembleClassifier::TLDEnsembleClassifier(std::vector<Vec4b> meas,int beg,int end):lastStep_(-1){ |
|
|
|
TLDEnsembleClassifier::TLDEnsembleClassifier(const std::vector<Vec4b>& meas,int beg,int end):lastStep_(-1){ |
|
|
|
int posSize=1,mpc=end-beg; |
|
|
|
int posSize = 1, mpc = end - beg; |
|
|
|
for(int i=0;i<mpc;i++)posSize*=2; |
|
|
|
for( int i = 0; i < mpc; i++ ) |
|
|
|
|
|
|
|
posSize *= 2; |
|
|
|
posAndNeg.assign(posSize,Point2i(0,0)); |
|
|
|
posAndNeg.assign(posSize,Point2i(0,0)); |
|
|
|
measurements.assign(meas.begin()+beg,meas.begin()+end); |
|
|
|
measurements.assign(meas.begin() + beg,meas.begin() + end); |
|
|
|
offset.assign(mpc,Point2i(0,0)); |
|
|
|
offset.assign(mpc,Point2i(0,0)); |
|
|
|
} |
|
|
|
} |
|
|
|
void TLDEnsembleClassifier::integrate(const Mat_<uchar>& patch,bool isPositive){ |
|
|
|
void TLDEnsembleClassifier::integrate(const Mat_<uchar>& patch,bool isPositive){ |
|
|
|
int position=code(patch.data,(int)patch.step[0]); |
|
|
|
int position = code(patch.data,(int)patch.step[0]); |
|
|
|
if(isPositive){ |
|
|
|
if(isPositive){ |
|
|
|
posAndNeg[position].x++; |
|
|
|
posAndNeg[position].x++; |
|
|
|
}else{ |
|
|
|
}else{ |
|
|
@ -303,38 +305,40 @@ void TLDEnsembleClassifier::integrate(const Mat_<uchar>& patch,bool isPositive){ |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
double TLDEnsembleClassifier::posteriorProbability(const uchar* data,int rowstep)const{ |
|
|
|
double TLDEnsembleClassifier::posteriorProbability(const uchar* data,int rowstep)const{ |
|
|
|
int position=code(data,rowstep); |
|
|
|
int position = code(data,rowstep); |
|
|
|
double posNum=(double)posAndNeg[position].x, negNum=(double)posAndNeg[position].y; |
|
|
|
double posNum = (double)posAndNeg[position].x, negNum = (double)posAndNeg[position].y; |
|
|
|
if(posNum==0.0 && negNum==0.0){ |
|
|
|
if(posNum == 0.0 && negNum == 0.0){ |
|
|
|
return 0.0; |
|
|
|
return 0.0; |
|
|
|
}else{ |
|
|
|
}else{ |
|
|
|
return posNum/(posNum+negNum); |
|
|
|
return posNum / (posNum + negNum); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
double TLDEnsembleClassifier::posteriorProbabilityFast(const uchar* data)const{ |
|
|
|
double TLDEnsembleClassifier::posteriorProbabilityFast(const uchar* data)const{ |
|
|
|
int position=codeFast(data); |
|
|
|
int position = codeFast(data); |
|
|
|
double posNum=(double)posAndNeg[position].x, negNum=(double)posAndNeg[position].y; |
|
|
|
double posNum = (double)posAndNeg[position].x, negNum = (double)posAndNeg[position].y; |
|
|
|
if(posNum==0.0 && negNum==0.0){ |
|
|
|
if(posNum == 0.0 && negNum == 0.0){ |
|
|
|
return 0.0; |
|
|
|
return 0.0; |
|
|
|
}else{ |
|
|
|
}else{ |
|
|
|
return posNum/(posNum+negNum); |
|
|
|
return posNum / (posNum + negNum); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
int TLDEnsembleClassifier::codeFast(const uchar* data)const{ |
|
|
|
int TLDEnsembleClassifier::codeFast(const uchar* data)const{ |
|
|
|
int position=0; |
|
|
|
int position = 0; |
|
|
|
for(int i=0;i<(int)measurements.size();i++){ |
|
|
|
for(int i = 0;i < (int)measurements.size();i++){ |
|
|
|
position=position<<1; |
|
|
|
position = position << 1; |
|
|
|
if(data[offset[i].x]<data[offset[i].y]){ |
|
|
|
if(data[offset[i].x] < data[offset[i].y]){ |
|
|
|
position++; |
|
|
|
position++; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
return position; |
|
|
|
return position; |
|
|
|
} |
|
|
|
} |
|
|
|
int TLDEnsembleClassifier::code(const uchar* data,int rowstep)const{ |
|
|
|
int TLDEnsembleClassifier::code(const uchar* data,int rowstep)const{ |
|
|
|
int position=0; |
|
|
|
int position = 0; |
|
|
|
for(int i=0;i<(int)measurements.size();i++){ |
|
|
|
for(int i = 0;i < (int)measurements.size();i++){ |
|
|
|
position=position<<1; |
|
|
|
position = position << 1; |
|
|
|
if(*(data+rowstep*measurements[i].val[0]+measurements[i].val[1])<*(data+rowstep*measurements[i].val[2]+measurements[i].val[3])){ |
|
|
|
if( *(data + rowstep * measurements[i].val[0] + measurements[i].val[1]) < |
|
|
|
|
|
|
|
*(data + rowstep * measurements[i].val[2] + measurements[i].val[3]) ) |
|
|
|
|
|
|
|
{ |
|
|
|
position++; |
|
|
|
position++; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
@ -345,15 +349,15 @@ int TLDEnsembleClassifier::makeClassifiers(Size size,int measurePerClassifier,in |
|
|
|
|
|
|
|
|
|
|
|
std::vector<Vec4b> measurements; |
|
|
|
std::vector<Vec4b> measurements; |
|
|
|
|
|
|
|
|
|
|
|
for(int i=0;i<gridSize;i++){ |
|
|
|
for(int i = 0;i < gridSize;i++){ |
|
|
|
for(int j=0;j<gridSize;j++){ |
|
|
|
for(int j = 0;j < gridSize;j++){ |
|
|
|
for(int k=0;k<j;k++){ |
|
|
|
for(int k = 0;k < j;k++){ |
|
|
|
Vec4b m; |
|
|
|
Vec4b m; |
|
|
|
m.val[0]=m.val[2]=i; |
|
|
|
m.val[0] = m.val[2] = i; |
|
|
|
m.val[1]=j;m.val[3]=k; |
|
|
|
m.val[1] = j;m.val[3] = k; |
|
|
|
measurements.push_back(m); |
|
|
|
measurements.push_back(m); |
|
|
|
m.val[1]=m.val[3]=i; |
|
|
|
m.val[1] = m.val[3] = i; |
|
|
|
m.val[0]=j;m.val[2]=k; |
|
|
|
m.val[0] = j;m.val[2] = k; |
|
|
|
measurements.push_back(m); |
|
|
|
measurements.push_back(m); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
@ -365,8 +369,8 @@ int TLDEnsembleClassifier::makeClassifiers(Size size,int measurePerClassifier,in |
|
|
|
stepPrefSuff(measurements,2,size.height,gridSize); |
|
|
|
stepPrefSuff(measurements,2,size.height,gridSize); |
|
|
|
stepPrefSuff(measurements,3,size.height,gridSize); |
|
|
|
stepPrefSuff(measurements,3,size.height,gridSize); |
|
|
|
|
|
|
|
|
|
|
|
for(int i=0,howMany=measurements.size()/measurePerClassifier;i<howMany;i++){ |
|
|
|
for(int i = 0,howMany = measurements.size() / measurePerClassifier;i < howMany;i++){ |
|
|
|
classifiers.push_back(TLDEnsembleClassifier(measurements,i*measurePerClassifier,(i+1)*measurePerClassifier)); |
|
|
|
classifiers.push_back(TLDEnsembleClassifier(measurements,i * measurePerClassifier, (i + 1) * measurePerClassifier)); |
|
|
|
} |
|
|
|
} |
|
|
|
return (int)classifiers.size(); |
|
|
|
return (int)classifiers.size(); |
|
|
|
} |
|
|
|
} |
|
|
|