Merge pull request #24 from albenoit/master
added samples to use retina in its basic form and for HDR tone mappingpull/33/head
commit
ed3e450695
2 changed files with 464 additions and 0 deletions
@ -0,0 +1,305 @@ |
||||
|
||||
//============================================================================
|
||||
// Name : OpenEXRimages_HDR_Retina_toneMapping.cpp
|
||||
// Author : Alexandre Benoit (benoit.alexandre.vision@gmail.com)
|
||||
// Version : 0.1
|
||||
// Copyright : Alexandre Benoit, LISTIC Lab, july 2011
|
||||
// Description : HighDynamicRange retina tone mapping with the help of the Gipsa/Listic's retina in C++, Ansi-style
|
||||
//============================================================================
|
||||
|
||||
#include <iostream> |
||||
#include <cstring> |
||||
|
||||
#include "opencv2/bioinspired.hpp" // retina based algorithms |
||||
#include "opencv2/imgproc.hpp" // cvCvtcolor function |
||||
#include "opencv2/highgui.hpp" // display |
||||
|
||||
static void help(std::string errorMessage) |
||||
{ |
||||
std::cout<<"Program init error : "<<errorMessage<<std::endl; |
||||
std::cout<<"\nProgram call procedure : ./OpenEXRimages_HDR_Retina_toneMapping [OpenEXR image to process]"<<std::endl; |
||||
std::cout<<"\t[OpenEXR image to process] : the input HDR image to process, must be an OpenEXR format, see http://www.openexr.com/ to get some samples or create your own using camera bracketing and Photoshop or equivalent software for OpenEXR image synthesis"<<std::endl; |
||||
std::cout<<"\nExamples:"<<std::endl; |
||||
std::cout<<"\t-Image processing : ./OpenEXRimages_HDR_Retina_toneMapping memorial.exr"<<std::endl; |
||||
} |
||||
|
||||
// simple procedure for 1D curve tracing
|
||||
static void drawPlot(const cv::Mat curve, const std::string figureTitle, const int lowerLimit, const int upperLimit) |
||||
{ |
||||
//std::cout<<"curve size(h,w) = "<<curve.size().height<<", "<<curve.size().width<<std::endl;
|
||||
cv::Mat displayedCurveImage = cv::Mat::ones(200, curve.size().height, CV_8U); |
||||
|
||||
cv::Mat windowNormalizedCurve; |
||||
normalize(curve, windowNormalizedCurve, 0, 200, cv::NORM_MINMAX, CV_32F); |
||||
|
||||
displayedCurveImage = cv::Scalar::all(255); // set a white background
|
||||
int binW = cvRound((double)displayedCurveImage.cols/curve.size().height); |
||||
|
||||
for( int i = 0; i < curve.size().height; i++ ) |
||||
rectangle( displayedCurveImage, cv::Point(i*binW, displayedCurveImage.rows), |
||||
cv::Point((i+1)*binW, displayedCurveImage.rows - cvRound(windowNormalizedCurve.at<float>(i))), |
||||
cv::Scalar::all(0), -1, 8, 0 ); |
||||
rectangle( displayedCurveImage, cv::Point(0, 0), |
||||
cv::Point((lowerLimit)*binW, 200), |
||||
cv::Scalar::all(128), -1, 8, 0 ); |
||||
rectangle( displayedCurveImage, cv::Point(displayedCurveImage.cols, 0), |
||||
cv::Point((upperLimit)*binW, 200), |
||||
cv::Scalar::all(128), -1, 8, 0 ); |
||||
|
||||
cv::imshow(figureTitle, displayedCurveImage); |
||||
} |
||||
/*
|
||||
* objective : get the gray level map of the input image and rescale it to the range [0-255] |
||||
*/ |
||||
static void rescaleGrayLevelMat(const cv::Mat &inputMat, cv::Mat &outputMat, const float histogramClippingLimit) |
||||
{ |
||||
|
||||
// adjust output matrix wrt the input size but single channel
|
||||
std::cout<<"Input image rescaling with histogram edges cutting (in order to eliminate bad pixels created during the HDR image creation) :"<<std::endl; |
||||
//std::cout<<"=> image size (h,w,channels) = "<<inputMat.size().height<<", "<<inputMat.size().width<<", "<<inputMat.channels()<<std::endl;
|
||||
//std::cout<<"=> pixel coding (nbchannel, bytes per channel) = "<<inputMat.elemSize()/inputMat.elemSize1()<<", "<<inputMat.elemSize1()<<std::endl;
|
||||
|
||||
// rescale between 0-255, keeping floating point values
|
||||
cv::normalize(inputMat, outputMat, 0.0, 255.0, cv::NORM_MINMAX); |
||||
|
||||
// extract a 8bit image that will be used for histogram edge cut
|
||||
cv::Mat intGrayImage; |
||||
if (inputMat.channels()==1) |
||||
{ |
||||
outputMat.convertTo(intGrayImage, CV_8U); |
||||
}else |
||||
{ |
||||
cv::Mat rgbIntImg; |
||||
outputMat.convertTo(rgbIntImg, CV_8UC3); |
||||
cvtColor(rgbIntImg, intGrayImage, cv::COLOR_BGR2GRAY); |
||||
} |
||||
|
||||
// get histogram density probability in order to cut values under above edges limits (here 5-95%)... usefull for HDR pixel errors cancellation
|
||||
cv::Mat dst, hist; |
||||
int histSize = 256; |
||||
calcHist(&intGrayImage, 1, 0, cv::Mat(), hist, 1, &histSize, 0); |
||||
cv::Mat normalizedHist; |
||||
normalize(hist, normalizedHist, 1, 0, cv::NORM_L1, CV_32F); // normalize histogram so that its sum equals 1
|
||||
|
||||
double min_val, max_val; |
||||
minMaxLoc(normalizedHist, &min_val, &max_val); |
||||
//std::cout<<"Hist max,min = "<<max_val<<", "<<min_val<<std::endl;
|
||||
|
||||
// compute density probability
|
||||
cv::Mat denseProb=cv::Mat::zeros(normalizedHist.size(), CV_32F); |
||||
denseProb.at<float>(0)=normalizedHist.at<float>(0); |
||||
int histLowerLimit=0, histUpperLimit=0; |
||||
for (int i=1;i<normalizedHist.size().height;++i) |
||||
{ |
||||
denseProb.at<float>(i)=denseProb.at<float>(i-1)+normalizedHist.at<float>(i); |
||||
//std::cout<<normalizedHist.at<float>(i)<<", "<<denseProb.at<float>(i)<<std::endl;
|
||||
if ( denseProb.at<float>(i)<histogramClippingLimit) |
||||
histLowerLimit=i; |
||||
if ( denseProb.at<float>(i)<1-histogramClippingLimit) |
||||
histUpperLimit=i; |
||||
} |
||||
// deduce min and max admitted gray levels
|
||||
float minInputValue = (float)histLowerLimit/histSize*255; |
||||
float maxInputValue = (float)histUpperLimit/histSize*255; |
||||
|
||||
std::cout<<"=> Histogram limits " |
||||
<<"\n\t"<<histogramClippingLimit*100<<"% index = "<<histLowerLimit<<" => normalizedHist value = "<<denseProb.at<float>(histLowerLimit)<<" => input gray level = "<<minInputValue |
||||
<<"\n\t"<<(1-histogramClippingLimit)*100<<"% index = "<<histUpperLimit<<" => normalizedHist value = "<<denseProb.at<float>(histUpperLimit)<<" => input gray level = "<<maxInputValue |
||||
<<std::endl; |
||||
//drawPlot(denseProb, "input histogram density probability", histLowerLimit, histUpperLimit);
|
||||
drawPlot(normalizedHist, "input histogram", histLowerLimit, histUpperLimit); |
||||
|
||||
// rescale image range [minInputValue-maxInputValue] to [0-255]
|
||||
outputMat-=minInputValue; |
||||
outputMat*=255.0/(maxInputValue-minInputValue); |
||||
// cut original histogram and back project to original image
|
||||
cv::threshold( outputMat, outputMat, 255.0, 255.0, 2 ); //THRESH_TRUNC, clips values above 255
|
||||
cv::threshold( outputMat, outputMat, 0.0, 0.0, 3 ); //THRESH_TOZERO, clips values under 0
|
||||
|
||||
} |
||||
// basic callback method for interface management
|
||||
cv::Mat inputImage; |
||||
cv::Mat imageInputRescaled; |
||||
int histogramClippingValue; |
||||
static void callBack_rescaleGrayLevelMat(int, void*) |
||||
{ |
||||
std::cout<<"Histogram clipping value changed, current value = "<<histogramClippingValue<<std::endl; |
||||
rescaleGrayLevelMat(inputImage, imageInputRescaled, (float)(histogramClippingValue/100.0)); |
||||
normalize(imageInputRescaled, imageInputRescaled, 0.0, 255.0, cv::NORM_MINMAX); |
||||
} |
||||
|
||||
cv::Ptr<cv::bioinspired::Retina> retina; |
||||
int retinaHcellsGain; |
||||
int localAdaptation_photoreceptors, localAdaptation_Gcells; |
||||
static void callBack_updateRetinaParams(int, void*) |
||||
{ |
||||
retina->setupOPLandIPLParvoChannel(true, true, (float)(localAdaptation_photoreceptors/200.0), 0.5f, 0.43f, (float)retinaHcellsGain, 1.f, 7.f, (float)(localAdaptation_Gcells/200.0)); |
||||
} |
||||
|
||||
int colorSaturationFactor; |
||||
static void callback_saturateColors(int, void*) |
||||
{ |
||||
retina->setColorSaturation(true, (float)colorSaturationFactor); |
||||
} |
||||
|
||||
int main(int argc, char* argv[]) |
||||
{ |
||||
// welcome message
|
||||
std::cout<<"*********************************************************************************"<<std::endl; |
||||
std::cout<<"* Retina demonstration for High Dynamic Range compression (tone-mapping) : demonstrates the use of a wrapper class of the Gipsa/Listic Labs retina model."<<std::endl; |
||||
std::cout<<"* This retina model allows spatio-temporal image processing (applied on still images, video sequences)."<<std::endl; |
||||
std::cout<<"* This demo focuses demonstration of the dynamic compression capabilities of the model"<<std::endl; |
||||
std::cout<<"* => the main application is tone mapping of HDR images (i.e. see on a 8bit display a more than 8bits coded (up to 16bits) image with details in high and low luminance ranges"<<std::endl; |
||||
std::cout<<"* The retina model still have the following properties:"<<std::endl; |
||||
std::cout<<"* => It applies a spectral whithening (mid-frequency details enhancement)"<<std::endl; |
||||
std::cout<<"* => high frequency spatio-temporal noise reduction"<<std::endl; |
||||
std::cout<<"* => low frequency luminance to be reduced (luminance range compression)"<<std::endl; |
||||
std::cout<<"* => local logarithmic luminance compression allows details to be enhanced in low light conditions\n"<<std::endl; |
||||
std::cout<<"* for more information, reer to the following papers :"<<std::endl; |
||||
std::cout<<"* Benoit A., Caplier A., Durette B., Herault, J., \"USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING\", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011"<<std::endl; |
||||
std::cout<<"* Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891."<<std::endl; |
||||
std::cout<<"* => reports comments/remarks at benoit.alexandre.vision@gmail.com"<<std::endl; |
||||
std::cout<<"* => more informations and papers at : http://sites.google.com/site/benoitalexandrevision/"<<std::endl; |
||||
std::cout<<"*********************************************************************************"<<std::endl; |
||||
std::cout<<"** WARNING : this sample requires OpenCV to be configured with OpenEXR support **"<<std::endl; |
||||
std::cout<<"*********************************************************************************"<<std::endl; |
||||
std::cout<<"*** You can use free tools to generate OpenEXR images from images sets : ***"<<std::endl; |
||||
std::cout<<"*** => 1. take a set of photos from the same viewpoint using bracketing ***"<<std::endl; |
||||
std::cout<<"*** => 2. generate an OpenEXR image with tools like qtpfsgui.sourceforge.net ***"<<std::endl; |
||||
std::cout<<"*** => 3. apply tone mapping with this program ***"<<std::endl; |
||||
std::cout<<"*********************************************************************************"<<std::endl; |
||||
|
||||
// basic input arguments checking
|
||||
if (argc<2) |
||||
{ |
||||
help("bad number of parameter"); |
||||
return -1; |
||||
} |
||||
|
||||
bool useLogSampling = !strcmp(argv[argc-1], "log"); // check if user wants retina log sampling processing
|
||||
int chosenMethod=0; |
||||
if (!strcmp(argv[argc-1], "fast")) |
||||
{ |
||||
chosenMethod=1; |
||||
std::cout<<"Using fast method (no spectral whithning), adaptation of Meylan&al 2008 method"<<std::endl; |
||||
} |
||||
|
||||
std::string inputImageName=argv[1]; |
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// checking input media type (still image, video file, live video acquisition)
|
||||
std::cout<<"RetinaDemo: processing image "<<inputImageName<<std::endl; |
||||
// image processing case
|
||||
// declare the retina input buffer... that will be fed differently in regard of the input media
|
||||
inputImage = cv::imread(inputImageName, -1); // load image in RGB mode
|
||||
std::cout<<"=> image size (h,w) = "<<inputImage.size().height<<", "<<inputImage.size().width<<std::endl; |
||||
if (!inputImage.total()) |
||||
{ |
||||
help("could not load image, program end"); |
||||
return -1; |
||||
} |
||||
// rescale between 0 and 1
|
||||
normalize(inputImage, inputImage, 0.0, 1.0, cv::NORM_MINMAX); |
||||
cv::Mat gammaTransformedImage; |
||||
cv::pow(inputImage, 1./5, gammaTransformedImage); // apply gamma curve: img = img ** (1./5)
|
||||
imshow("EXR image original image, 16bits=>8bits linear rescaling ", inputImage); |
||||
imshow("EXR image with basic processing : 16bits=>8bits with gamma correction", gammaTransformedImage); |
||||
if (inputImage.empty()) |
||||
{ |
||||
help("Input image could not be loaded, aborting"); |
||||
return -1; |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Program start in a try/catch safety context (Retina may throw errors)
|
||||
try |
||||
{ |
||||
/* create a retina instance with default parameters setup, uncomment the initialisation you wanna test
|
||||
* -> if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision) |
||||
*/ |
||||
if (useLogSampling) |
||||
{ |
||||
retina = cv::bioinspired::createRetina(inputImage.size(),true, cv::bioinspired::RETINA_COLOR_BAYER, true, 2.0, 10.0); |
||||
} |
||||
else// -> else allocate "classical" retina :
|
||||
retina = cv::bioinspired::createRetina(inputImage.size()); |
||||
|
||||
// create a fast retina tone mapper (Meyla&al algorithm)
|
||||
std::cout<<"Allocating fast tone mapper..."<<std::endl; |
||||
//cv::Ptr<cv::RetinaFastToneMapping> fastToneMapper=createRetinaFastToneMapping(inputImage.size());
|
||||
std::cout<<"Fast tone mapper allocated"<<std::endl; |
||||
|
||||
// save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup"
|
||||
retina->write("RetinaDefaultParameters.xml"); |
||||
|
||||
// desactivate Magnocellular pathway processing (motion information extraction) since it is not usefull here
|
||||
retina->activateMovingContoursProcessing(false); |
||||
|
||||
// declare retina output buffers
|
||||
cv::Mat retinaOutput_parvo; |
||||
|
||||
/////////////////////////////////////////////
|
||||
// prepare displays and interactions
|
||||
histogramClippingValue=0; // default value... updated with interface slider
|
||||
//inputRescaleMat = inputImage;
|
||||
//outputRescaleMat = imageInputRescaled;
|
||||
cv::namedWindow("Processing configuration",1); |
||||
cv::createTrackbar("histogram edges clipping limit", "Processing configuration",&histogramClippingValue,50,callBack_rescaleGrayLevelMat); |
||||
|
||||
colorSaturationFactor=3; |
||||
cv::createTrackbar("Color saturation", "Processing configuration", &colorSaturationFactor,5,callback_saturateColors); |
||||
|
||||
retinaHcellsGain=40; |
||||
cv::createTrackbar("Hcells gain", "Processing configuration",&retinaHcellsGain,100,callBack_updateRetinaParams); |
||||
|
||||
localAdaptation_photoreceptors=197; |
||||
localAdaptation_Gcells=190; |
||||
cv::createTrackbar("Ph sensitivity", "Processing configuration", &localAdaptation_photoreceptors,199,callBack_updateRetinaParams); |
||||
cv::createTrackbar("Gcells sensitivity", "Processing configuration", &localAdaptation_Gcells,199,callBack_updateRetinaParams); |
||||
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// apply default parameters of user interaction variables
|
||||
rescaleGrayLevelMat(inputImage, imageInputRescaled, (float)histogramClippingValue/100); |
||||
retina->setColorSaturation(true,(float)colorSaturationFactor); |
||||
callBack_updateRetinaParams(1,NULL); // first call for default parameters setup
|
||||
|
||||
// processing loop with stop condition
|
||||
bool continueProcessing=true; |
||||
while(continueProcessing) |
||||
{ |
||||
// run retina filter
|
||||
if (!chosenMethod) |
||||
{ |
||||
retina->run(imageInputRescaled); |
||||
// Retrieve and display retina output
|
||||
retina->getParvo(retinaOutput_parvo); |
||||
cv::imshow("Retina input image (with cut edges histogram for basic pixels error avoidance)", imageInputRescaled/255.0); |
||||
cv::imshow("Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", retinaOutput_parvo); |
||||
cv::imwrite("HDRinput.jpg",imageInputRescaled/255.0); |
||||
cv::imwrite("RetinaToneMapping.jpg",retinaOutput_parvo); |
||||
} |
||||
else |
||||
{ |
||||
// apply the simplified hdr tone mapping method
|
||||
cv::Mat fastToneMappingOutput; |
||||
retina->applyFastToneMapping(imageInputRescaled, fastToneMappingOutput); |
||||
cv::imshow("Retina fast tone mapping output : 16bit=>8bit image retina tonemapping", fastToneMappingOutput); |
||||
} |
||||
/*cv::Mat fastToneMappingOutput_specificObject;
|
||||
fastToneMapper->setup(3.f, 1.5f, 1.f); |
||||
fastToneMapper->applyFastToneMapping(imageInputRescaled, fastToneMappingOutput_specificObject); |
||||
cv::imshow("### Retina fast tone mapping output : 16bit=>8bit image retina tonemapping", fastToneMappingOutput_specificObject); |
||||
*/ |
||||
cv::waitKey(10); |
||||
} |
||||
}catch(cv::Exception e) |
||||
{ |
||||
std::cerr<<"Error using Retina : "<<e.what()<<std::endl; |
||||
} |
||||
|
||||
// Program end message
|
||||
std::cout<<"Retina demo end"<<std::endl; |
||||
|
||||
return 0; |
||||
} |
@ -0,0 +1,159 @@ |
||||
//============================================================================
|
||||
// Name : retinademo.cpp
|
||||
// Author : Alexandre Benoit, benoit.alexandre.vision@gmail.com
|
||||
// Version : 0.1
|
||||
// Copyright : LISTIC/GIPSA French Labs, july 2011
|
||||
// Description : Gipsa/LISTIC Labs retina demo in C++, Ansi-style
|
||||
//============================================================================
|
||||
|
||||
#include <iostream> |
||||
#include <cstring> |
||||
|
||||
#include "opencv2/bioinspired.hpp" |
||||
#include "opencv2/highgui.hpp" |
||||
|
||||
static void help(std::string errorMessage) |
||||
{ |
||||
std::cout<<"Program init error : "<<errorMessage<<std::endl; |
||||
std::cout<<"\nProgram call procedure : retinaDemo [processing mode] [Optional : media target] [Optional LAST parameter: \"log\" to activate retina log sampling]"<<std::endl; |
||||
std::cout<<"\t[processing mode] :"<<std::endl; |
||||
std::cout<<"\t -image : for still image processing"<<std::endl; |
||||
std::cout<<"\t -video : for video stream processing"<<std::endl; |
||||
std::cout<<"\t[Optional : media target] :"<<std::endl; |
||||
std::cout<<"\t if processing an image or video file, then, specify the path and filename of the target to process"<<std::endl; |
||||
std::cout<<"\t leave empty if processing video stream coming from a connected video device"<<std::endl; |
||||
std::cout<<"\t[Optional : activate retina log sampling] : an optional last parameter can be specified for retina spatial log sampling"<<std::endl; |
||||
std::cout<<"\t set \"log\" without quotes to activate this sampling, output frame size will be divided by 4"<<std::endl; |
||||
std::cout<<"\nExamples:"<<std::endl; |
||||
std::cout<<"\t-Image processing : ./retinaDemo -image lena.jpg"<<std::endl; |
||||
std::cout<<"\t-Image processing with log sampling : ./retinaDemo -image lena.jpg log"<<std::endl; |
||||
std::cout<<"\t-Video processing : ./retinaDemo -video myMovie.mp4"<<std::endl; |
||||
std::cout<<"\t-Live video processing : ./retinaDemo -video"<<std::endl; |
||||
std::cout<<"\nPlease start again with new parameters"<<std::endl; |
||||
} |
||||
|
||||
int main(int argc, char* argv[]) |
||||
{ |
||||
// welcome message
|
||||
std::cout<<"****************************************************"<<std::endl; |
||||
std::cout<<"* Retina demonstration : demonstrates the use of is a wrapper class of the Gipsa/Listic Labs retina model."<<std::endl; |
||||
std::cout<<"* This retina model allows spatio-temporal image processing (applied on still images, video sequences)."<<std::endl; |
||||
std::cout<<"* As a summary, these are the retina model properties:"<<std::endl; |
||||
std::cout<<"* => It applies a spectral whithening (mid-frequency details enhancement)"<<std::endl; |
||||
std::cout<<"* => high frequency spatio-temporal noise reduction"<<std::endl; |
||||
std::cout<<"* => low frequency luminance to be reduced (luminance range compression)"<<std::endl; |
||||
std::cout<<"* => local logarithmic luminance compression allows details to be enhanced in low light conditions\n"<<std::endl; |
||||
std::cout<<"* for more information, reer to the following papers :"<<std::endl; |
||||
std::cout<<"* Benoit A., Caplier A., Durette B., Herault, J., \"USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING\", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011"<<std::endl; |
||||
std::cout<<"* Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891."<<std::endl; |
||||
std::cout<<"* => reports comments/remarks at benoit.alexandre.vision@gmail.com"<<std::endl; |
||||
std::cout<<"* => more informations and papers at : http://sites.google.com/site/benoitalexandrevision/"<<std::endl; |
||||
std::cout<<"****************************************************"<<std::endl; |
||||
std::cout<<" NOTE : this program generates the default retina parameters file 'RetinaDefaultParameters.xml'"<<std::endl; |
||||
std::cout<<" => you can use this to fine tune parameters and load them if you save to file 'RetinaSpecificParameters.xml'"<<std::endl; |
||||
|
||||
// basic input arguments checking
|
||||
if (argc<2) |
||||
{ |
||||
help("bad number of parameter"); |
||||
return -1; |
||||
} |
||||
|
||||
bool useLogSampling = !strcmp(argv[argc-1], "log"); // check if user wants retina log sampling processing
|
||||
|
||||
std::string inputMediaType=argv[1]; |
||||
|
||||
// declare the retina input buffer... that will be fed differently in regard of the input media
|
||||
cv::Mat inputFrame; |
||||
cv::VideoCapture videoCapture; // in case a video media is used, its manager is declared here
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// checking input media type (still image, video file, live video acquisition)
|
||||
if (!strcmp(inputMediaType.c_str(), "-image") && argc >= 3) |
||||
{ |
||||
std::cout<<"RetinaDemo: processing image "<<argv[2]<<std::endl; |
||||
// image processing case
|
||||
inputFrame = cv::imread(std::string(argv[2]), 1); // load image in RGB mode
|
||||
}else |
||||
if (!strcmp(inputMediaType.c_str(), "-video")) |
||||
{ |
||||
if (argc == 2 || (argc == 3 && useLogSampling)) // attempt to grab images from a video capture device
|
||||
{ |
||||
videoCapture.open(0); |
||||
}else// attempt to grab images from a video filestream
|
||||
{ |
||||
std::cout<<"RetinaDemo: processing video stream "<<argv[2]<<std::endl; |
||||
videoCapture.open(argv[2]); |
||||
} |
||||
|
||||
// grab a first frame to check if everything is ok
|
||||
videoCapture>>inputFrame; |
||||
}else |
||||
{ |
||||
// bad command parameter
|
||||
help("bad command parameter"); |
||||
return -1; |
||||
} |
||||
|
||||
if (inputFrame.empty()) |
||||
{ |
||||
help("Input media could not be loaded, aborting"); |
||||
return -1; |
||||
} |
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Program start in a try/catch safety context (Retina may throw errors)
|
||||
try |
||||
{ |
||||
// create a retina instance with default parameters setup, uncomment the initialisation you wanna test
|
||||
cv::Ptr<cv::bioinspired::Retina> myRetina; |
||||
|
||||
// if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision)
|
||||
if (useLogSampling) |
||||
{ |
||||
myRetina = cv::bioinspired::createRetina(inputFrame.size(), true, cv::bioinspired::RETINA_COLOR_BAYER, true, 2.0, 10.0); |
||||
} |
||||
else// -> else allocate "classical" retina :
|
||||
myRetina = cv::bioinspired::createRetina(inputFrame.size()); |
||||
|
||||
// save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup"
|
||||
myRetina->write("RetinaDefaultParameters.xml"); |
||||
|
||||
// load parameters if file exists
|
||||
myRetina->setup("RetinaSpecificParameters.xml"); |
||||
myRetina->clearBuffers(); |
||||
|
||||
// declare retina output buffers
|
||||
cv::Mat retinaOutput_parvo; |
||||
cv::Mat retinaOutput_magno; |
||||
|
||||
// processing loop with stop condition
|
||||
bool continueProcessing=true; // FIXME : not yet managed during process...
|
||||
while(continueProcessing) |
||||
{ |
||||
// if using video stream, then, grabbing a new frame, else, input remains the same
|
||||
if (videoCapture.isOpened()) |
||||
videoCapture>>inputFrame; |
||||
|
||||
// run retina filter
|
||||
myRetina->run(inputFrame); |
||||
// Retrieve and display retina output
|
||||
myRetina->getParvo(retinaOutput_parvo); |
||||
myRetina->getMagno(retinaOutput_magno); |
||||
cv::imshow("retina input", inputFrame); |
||||
cv::imshow("Retina Parvo", retinaOutput_parvo); |
||||
cv::imshow("Retina Magno", retinaOutput_magno); |
||||
|
||||
cv::waitKey(5); |
||||
} |
||||
}catch(cv::Exception e) |
||||
{ |
||||
std::cerr<<"Error using Retina : "<<e.what()<<std::endl; |
||||
} |
||||
|
||||
// Program end message
|
||||
std::cout<<"Retina demo end"<<std::endl; |
||||
|
||||
return 0; |
||||
} |
Loading…
Reference in new issue